
1/3

June 27, 2008

GUIDs are globally unique, but substrings of GUIDs
aren’t

devblogs.microsoft.com/oldnewthing/20080627-00

Raymond Chen

A customer needed to generate an 8-byte unique value, and their initial idea was to generate

a GUID and throw away the second half, keeping the first eight bytes. They wanted to know if

this was a good idea.

No, it’s not a good idea.

The GUID generation algorithm relies on the fact that it has all 16 bytes to use to establish

uniqueness, and if you throw away half of it, you lose the uniqueness. There are multiple

GUID generation algorithms, but I’ll pick one of them for concreteness, specifically the

version described in this Internet draft.

The first 60 bits of the GUID encode a timestamp, the precise format of which is not

important.

The next four bits are always 0001, which identify that this GUID was generated by

“algorithm 1”. The version field is necessary to ensure that two GUID generation algorithms

do not accidentally generate the same GUID. The algorithms are designed so that a particular

algorithm doesn’t generate the same GUID twice, but without a version field, there would be

no way to ensure that some other algorithm wouldn’t generate the same GUID by some

systematic collision.

The next 14 bits are “emergency uniquifier bits”; we’ll look at them later, because they are the

ones that fine tune the overall algorithm.

The next two bits are reserved and fixed at 01.

The last 48 bits are the unique address of the computer’s network card. If the computer does

not have a network card, set the top bit and use a random number generator for the other 47.

No valid network card will have the top bit set in its address, so there is no possibility that a

GUID generated from a computer without a network card will accidentally collide with a

GUID generated from a computer with a network card.

https://devblogs.microsoft.com/oldnewthing/20080627-00/?p=21823
http://www.webdav.org/specs/draft-leach-uuids-guids-01.txt


2/3

Once you take it apart, the bits of the GUID break down like this:

60 bits of timestamp,

48 bits of computer identifier,

14 bits of uniquifier, and

six bits are fixed,

for a total of 128 bits.

The goal of this algorithm is to use the combination of time and location (“space-time

coordinates” for the relativity geeks out there) as the uniqueness key. However, timekeeping

is not perfect, so there’s a possibility that, for example, two GUIDs are generated in rapid

succession from the same machine, so close to each other in time that the timestamp would

be the same. That’s where the uniquifier comes in. When time appears to have stood still (if

two requests for a GUID are made in rapid succession) or gone backward (if the system clock

is set to a new time earlier than what it was), the uniquifier is incremented so that GUIDs

generated from the “second time it was five o’clock” don’t collide with those generated “the

first time it was five o’clock”.

Once you see how it all works, it’s clear that you can’t just throw away part of the GUID since

all the parts (well, except for the fixed parts) work together to establish the uniqueness. If you

take any of the three parts away, the algorithm falls apart. In particular, keeping just the first

eight bytes (64 bits) gives you the timestamp and four constant bits; in other words, all you

have is a timestamp, not a GUID.

Since it’s just a timestamp, you can have collisions. If two computers generate one of these

“truncated GUIDs” at the same time, they will generate the same result. Or if the system

clock goes backward in time due to a clock reset, you’ll start regenerating GUIDs that you had

generated the first time it was that time.

Upon further investigation, the customer really didn’t need global uniqueness. The value

merely had to be unique among a cluster of a half dozen computers. Once you understand

why the GUID generation algorithm works, you can reimplement it on a smaller scale:

Four bits to encode the computer number,

56 bits for the timestamp, and

four bits as a uniquifier.

We can reduce the number of bits to make the computer unique since the number of

computers in the cluster is bounded, and we can reduce the number of bits in the timestamp

by assuming that the program won’t be in service 200 years from now, or that if it is, the

items that were using these unique values are no longer relevant. At 100 nanoseconds per

tick, 2^56 ticks will take 228 years to elapse. (Extending the range beyond 228 years is left as

an exercise, but it’s wasted effort, because you’re going to hit the 16-computer limit first!)



3/3

You can get away with a four-bit uniquifier by assuming that the clock won’t drift more than

an hour out of skew (say) and that the clock won’t reset more than sixteen times per hour.

Since you’re running under a controlled environment, you can make this one of the rules for

running your computing cluster.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

