
1/4

July 9, 2008

The evolution of menu templates: 16-bit classic menus
devblogs.microsoft.com/oldnewthing/20080709-00

Raymond Chen

Menus aren’t as complicated as dialogs.
There are no fonts, no positioning,
it’s just a list of

menu items and flags.
Well, okay, there’s the recursive part,
when a menu has a submenu.

But that’s really the only wrinkle.
Most of it is pretty boring.

The 16-bit classic menu template begins with the following header:

struct MENUHEADER16 {

WORD wVersion;

WORD cbHeaderSize;

BYTE rgbExtra[cbHeaderSize];

};

The version is zero for 16-bit classic menu templates,
and the cbHeaderSize is the number

of
extra bytes in the menu header that have to be skipped over
to find the first actual menu

item.
In practice, cbHeaderSize is always zero.
This header exists only on the top level

menu;
recursive submenus do not have a MENUHEADER16 .

After the header (and any extra bytes specified by cbHeaderSize)
comes a packed array of

menu item templates.
There are two types of menu item templates, normal items and
pop-up

submenus.
First, let’s look at the normal items:

struct NORMALMENUITEM16 {

WORD wFlags; // menu item flags (MFT_*, MFS_*)

WORD wID; // menu item ID

CHAR szText[]; // null terminated ANSI string

};

Normal items represent menu items that are not pop-up submenus,
and they take a pretty

straightforward form.
All you get are flags, the item ID, and the menu item text.
The flags are

values such as
 MFT_STRING ,
 MFT_MENUBARBREAK ,
and MFS_DISABLED .
Of course, the

MF_POPUP flag is not allowed,
since this is a normal item template.
The flag MFS_HILITE is

also not allowed,
for reasons we will see later.

The other type of menu item template is the pop-up submenu.

https://devblogs.microsoft.com/oldnewthing/20080709-00/?p=21693

2/4

struct POPUPMENUITEM16 {

WORD wFlags; // menu item flags (MFT_*, MFS_*)

CHAR szText[]; // null terminated ANSI string

};

The pop-up item template
doesn’t have an ID, the MF_POPUP flag
must be set in the flags

(naturally),
the MFS_HILITE flag must not be set,
and it is immediately followed by…

another menu resource,
minus the resource header, which describes the pop-up submenu

itself.
(This is the recursive part.)

The end of the list of menu item templates is reached
when an item with the MF_END flag is

set in its flags.
And now you see why MFS_HILITE is disallowed:

#define MF_END 0x00000080L

#define MF_HILITE 0x00000080L

#define MFS_HILITE MF_HILITE

If you set the MF_HILITE flag,
it would be mistaken for the end of the menu template.

Fortunately, there’s no need to set the MFS_HILITE
flag in the menu item template since

highlighting happens at runtime
based on the user’s mouse and keyboard activity,
not at

menu creation time.

To make all this discussion concrete, let’s convert
this rather uninteresting menu resource

into a menu template:

1 MENU

BEGIN

 POPUP “&File”

 BEGIN

 MENUITEM “&Open\tCtrl+O”, 100

 MENUITEM SEPARATOR

 MENUITEM “&Exit\tAlt+X”, 101

 END

 POPUP “&View”

 BEGIN

 MENUITEM “&Status Bar”, 102, CHECKED

 END

END

The menu template for this classic 16-bit menu would go something
like this:
We start with

the header, which always looks the same.

0000 00 00 // wVersion = 0

0002 00 00 // cbHeaderSize = 0

Next comes the list of menu items.
Our first is a pop-up submenu,
so the MF_POPUP flag is

set,
indicating that we have a POPUPMENUITEM16 :

3/4

0004 10 00 // wFlags = MF_POPUP

 // no wID

0006 26 46 69 6C 65 00 // “&File” + null terminator

Since this is a pop-up menu, the contents of the pop-up menu
follow.
This is the recursive

part of the menu template format:
we have a menu template inside the outer one.
The first

item of the pop-up menu is a string and
therefore takes the form of a NORMALMENUITEM16 :

000C 00 00 // wFlags = MFT_STRING

000E 64 00 // wID = 100

0010 26 4F 70 65 6E 09 43 74 72 6C 2B 4F 00

 // “&Open\tCtrl+O” + null terminator

The next item of the pop-up menu is a separator.
If you have been following the rules strictly,

you would generate the separator like this:

001D 00 08 // wFlags = MFT_SEPARATOR

001F 00 00 // wID = 0

0021 00 // “”

However, it turns out that there is an alternate form for
separators, namely to pass all zeroes:

001D 00 00 // wFlags = 0

001F 00 00 // wID = 0

0021 00 // “”

The existence of this alternate form is actually an artifact
of history, which we’ll look at next

time.
But for now, just realize that you can express a separator
in two different ways, either

the official way with MFT_SEPARATOR
or the alternate way with wFlags = 0 .
Either works

just fine.

Anyway, let’s finish up that submenu with the final item,
which is a string.
We set the

MF_END flag to indicate that this is
the end of the (nested) menu.

0022 80 00 // wFlags = MFT_STRING | MF_END

0024 65 00 // wID = 101

0026 26 45 78 69 74 09 41 6C 74 2B 58 00

 // “&Exit\tAlt+X” + null terminator

With the completion of the nested menu, we pop back to the
top-level menu.
Next comes the

“View” submenu.

0032 90 00 // wFlags = MF_POPUP | MF_END

 // no wID

0034 26 56 69 65 77 00 // “&View” + null terminator

The MF_POPUP flag marks this as a
 POPUPMENUITEM16 , which means that there is no
 wID .

And look, the MF_END flag is set,
which means that this is the last item on the top-level

menu.
But we’re not finished yet, since we still have to read
the nested submenu.
(Notice that

4/4

the “end of menu” marker is far away from
the actual end of the menu!)

003A 88 00 // wFlags = MFT_STRING | MFS_CHECKED | MF_END

003C 66 00 // wID = 102

003E 26 53 74 61 74 75 73 20 42 61 72 00

 // “&Status Bar” + null terminator

The submenu consists of a single item,
so its first item is also its last (MF_END).
Now that the

submenu is complete, we pop back to the main menu again,
but as we saw, the main menu is

also complete,
so that concludes the entire menu template.

Next time, we’ll look at that strange alternate form for
separator items before returning to the

history of menu templates.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

