
1/4

July 15, 2008

The evolution of menu templates: 16-bit extended menus
devblogs.microsoft.com/oldnewthing/20080715-00

Raymond Chen

Windows 95 introduced a new menu format,
known as “extended menus”.
You declare these

in a resource file with the MENUEX keyword.
The 16-bit extended menu is really just a

temporary stopping point
on the way to the 32-bit extended menu,
since the 16-bit form is

supported only by the Windows 95 family of operating
systems.
It’s sort of the missing link of

menu templates.

Things start off the same as
the 16-bit classic menu,
with a structure I’ve been calling

MENUHEADER16 :

struct MENUHEADER16 {

WORD wVersion;

WORD cbHeaderSize;

BYTE rgbExtra[cbHeaderSize-4];

};

The version number for extended menus is one instead of zero,
and the cbHeaderSize now

includes the size of the
 wVersion and cbHeaderSize fields in
the header size count;

therefore, the number of interstitial bytes
four less than the value specified by the

cbHeaderSize member.

Due to a bug in Windows 95 (and its descendants),
the cbHeaderSize is ignored, and its

value is assumed
to be four.
Fortunately, every version of the 16-bit resource compiler that

supports 16-bit extended menu templates sets the cbHeaderSize
to four.
Consequently,

nothing goes wrong in practice.
And I suspect nobody has noticed this bug in the over fifteen

years
(not twenty-five
as I had originally written)
the code has been in existence.

Unlike the classic menu, there is a prefix structure that
comes before the list of menu items.

struct MENUPREFIX16 {

DWORD dwContextHelpID;

};

New to extended menus is the addition of context help IDs.
These values can be set and

retrieved
programmatically with the
 GetMenuContextHelpId and

SetMenuContextHelpId functions.

https://devblogs.microsoft.com/oldnewthing/20080715-00/?p=21613
http://blogs.msdn.com/oldnewthing/archive/2008/07/09/8711897.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/07/15/8732375.aspx#8733629

2/4

The template then continues with a packed array of structures
I will call MENUITEMEX16 :

struct MENUITEMEX16 {

DWORD dwType;

DWORD dwState;

WORD wID;

BYTE bFlags;

CHAR szText[]; // null terminated ANSI string

};

Whereas the members of the classic MENUITEM16
were designed to be passed to the function

InsertMenu ,
the members of the extended MENUITEMEX16 were
designed to be passed to

the function
 InsertMenuItem .
The dwType , dwState , and
 wID members correspond to

the fType , fState , and
 wID
members of the 16-bit MENUITEMINFO structure.
Similarly,

the szText goes into the
 dwItemData if the item requires a string.
(If the item doesn’t

require a string, then the
 szText should be an empty string; i.e.,
should consist solely of the

null terminator.)

Notice that a new feature of extended menus is that pop-up menus
can have IDs as well as

normal menu items.

The bFlags describes other information about the
menu item,
information that in the

classic menu was hidden in spare bits
in the wFlags .
But here, the bFlags is where this

information is kept.
The following flags are currently defined:

0x01 This item is a pop-up submenu

0x80 This item is the last item in the menu

If indeed the bottom bit is set, then after the MENUITEMEX16
comes a description of the

submenu, recursively.
(Note that the submenu does not have
a MENUHEADER16 .)

As before, we’ll illustrate this format with an example.

1 MENUEX 1000

BEGIN

 POPUP “&File”, 200,,, 1001

 BEGIN

 MENUITEM “&Open\tCtrl+O”, 100

 MENUITEM “”, -1, MFT_SEPARATOR

 MENUITEM “&Exit\tAlt+X”, 101

 END

 POPUP “&View”, 201,,, 1002

 BEGIN

 MENUITEM “&Status Bar”, 102,, MFS_CHECKED

 END

END

3/4

The resulting 16-bit extended menu template begins with the header:

0000 01 00 // wVersion = 1

0002 04 00 // cbHeaderSize = 4

Since this is the start of a menu, we get a context help ID:

0004 E8 03 00 00 // dwContextHelpID = 1000

After the context help ID come the menu items.
Our first is a pop-up submenu,
so the

bFlags indicates that a submenu is coming:

0008 00 00 00 00 // dwType = MFT_STRING

000C 00 00 00 00 // dwState = 0

0010 C8 00 // wID = 200

0012 01 // bFlags = “pop-up submenu”

0013 26 46 69 6C 65 00 // “&File” + null terminator

Since we have a pop-up submenu, we recursively include
a template for that submenu

directly after the menu item template.
Consequently, we begin with the context help ID:

0019 E9 03 00 00 // dwContextHelpID = 1001

And then the contents of the submenu:

001D 00 00 00 00 // dwType = MFT_STRING

0021 00 00 00 00 // dwState = 0

0025 64 00 // wID = 100

0027 00 // bFlags = 0

0028 26 4F 70 65 6E 09 43 74 72 6C 2B 4F 00

 // “&Open\tCtrl+O” + null terminator

0035 00 08 00 00 // dwType = MFT_SEPARATOR

0039 00 00 00 00 // dwState = 0

003D FF FF // wID = -1

003F 00 // bFlags = 0

0040 00 // “”

0041 00 00 00 00 // dwType = MFT_STRING

0045 00 00 00 00 // dwState = 0

0049 65 00 // wID = 101

004B 80 // bFlags = “this is the last menu item”

004C 26 45 78 69 74 09 41 6C 74 2B 58 00

 // “&Exit\tAlt+X” + null terminator

When we reach the end of the pop-up submenu, we pop up a level.
Therefore, the next entries

describe more top-level menu items.

4/4

0058 00 00 00 00 // dwType = MFT_STRING

005C 00 00 00 00 // dwState = 0

0060 C9 00 // wID = 201

0062 81 // bFlags = “pop-up submenu” |

 // “this is the last menu item”

0063 26 56 69 65 77 00 // “&View” + null terminator

Ah, no sooner do we pop up than we push back down with
another submenu.
And the “last

menu item” flag is set,
which means that once the submenu is finished,
we are done with the

extended menu template.

0069 EA 03 00 00 // dwContextHelpID = 1002

006D 00 00 00 00 // dwType = MFT_STRING

0071 08 00 00 00 // dwState = MFS_CHECKED

0075 66 00 // wID = 102

0077 80 // bFlags = “this is the last menu item”

0078 26 53 74 61 74 75 73 20 42 61 72 00

 // “&Status Bar” + null terminator

After the context help ID, we have the sole menu item for
this pop-up submenu, so the first

item is also the last item.

Next time, we’ll wrap up by looking at the final menu template format,
the 32-bit extended

menu.
I bet you all can’t wait.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

