
1/3

July 24, 2008

Reading a contract from the other side: Simulating a drop
devblogs.microsoft.com/oldnewthing/20080724-00

Raymond Chen

Most people, when they think of the
 IDropTarget interface,
think only of implementing a

drop target.
But you can read the contract from the other side,
because the description of how

a drag source interacts with a drop target
tells you how to be a drag source.

To summarize, the sequence of drop target operations go like this:

IDropTarget::DragEnter is called to indicate that
an object has been dragged into

the drop target.
If the drop target returns a failure code, then the drop operation
ends

immediately.

Otherwise, IDropTarget::DragOver calls
are made to advise the drop target as to the

object’s location.

If the user completes the drop operation, then call
 IDropTarget::Drop .
Otherwise

call IDropTarget::Leave .
A drop operation can fail to complete because the user hit

the
Escape key, for example, or dragged the mouse out of the drop target.

Let’s write a simple program that drops one file onto another.

https://devblogs.microsoft.com/oldnewthing/20080724-00/?p=21483

2/3

#include <windows.h>

#include <shlobj.h>

#include <shellapi.h>

#include <tchar.h>

… Insert the function GetUIObjectOfFile here …

int __cdecl wmain(int argc, WCHAR **argv)

{

if (argc == 3 && SUCCEEDED(CoInitialize(NULL))) {

 IDataObject *pdto;

 if (SUCCEEDED(GetUIObjectOfFile(NULL, argv[1],

 IID_IDataObject, (void**)&pdto))) {

 IDropTarget *pdt;

 if (SUCCEEDED(GetUIObjectOfFile(NULL, argv[2],

 IID_IDropTarget, (void**)&pdt))) {

 POINTL pt = { 0, 0 };

 DWORD dwEffect = DROPEFFECT_COPY | DROPEFFECT_LINK;

 if (SUCCEEDED(pdt->DragEnter(pdto, MK_LBUTTON,

 pt, &dwEffect))) {

 dwEffect &= DROPEFFECT_COPY | DROPEFFECT_LINK;

 if (dwEffect) {

 pdt->Drop(pdto, MK_LBUTTON, pt, &dwEffect);

 } else {

 pdt->DragLeave();

 }

 }

 pdt->Release();

 }

 pdto->Release();

 }

 CoUninitialize();

}
return 0;

}

This is a pretty straightforward implementation of the
host side of the drag/drop protocol.

Run this program with the full paths to two files,
the first being the file to drop, and the

second being
the file you want to drop it onto.
(Modifying this program to accept relative

paths is left
as an exercise for the reader.)
For example, you might try

fakedrop c:\autoexec.bat c:\windows\notepad.exe

Now, sure, dropping a file on a program is nothing exciting.
You could’ve just run the

program with the file as the
command line argument, after all.
But that’s looking at it too

narrowly;
you are simulating a drop operation,
after all.
For example,
you can drop a file onto

a shortcut to a printer, and the
file will print;
or you can drop a file onto a folder and it will be

copied
there (since we specified DROPEFFECT_COPY | DROPEFFECT_LINK ,
but folders prefer

http://blogs.msdn.com/oldnewthing/archive/2004/09/20/231739.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/11/12/256472.aspx

3/3

copy to link if the Ctrl+Shift keys are not held down);
or you can drop a file onto the
 Mail

Recipient.MAPIMail shortcut in your
“Send To” folder to create a mail message with the

file as
an attachment.

Oh wait, that last example with
 Mail Recipient.MAPIMail
doesn’t work.
We’ll look at why

next time,
although I suspect you already know the reason.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/11/12/256472.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

