
1/2

August 8, 2008

If you return FALSE from DLL_PROCESS_ATTACH, will
you get a DLL_PROCESS_DETACH?

devblogs.microsoft.com/oldnewthing/20080808-00

Raymond Chen

If you return FALSE from DLL_PROCESS_ATTACH , will you get a DLL_PROCESS_DETACH ?

Yes.

No.

…

Yes.

All three answers are correct, for different formulations of the question.

From the kernel’s point of view, the answer is a simple Yes. If a DLL’s entry point returns

FALSE to the DLL_PROCESS_ATTACH notification, it will receive a DLL_PROCESS_DETACH

notification.

However, most C and C++ programs do not use the raw DLL entry point. Instead, they use

the C runtime entry point, which will have a name something like DllMainCRTStartup .

That entry point function does work to manage the C runtime library and calls your entry

point (which you’ve probably called DllMain) to see what you think.

If you compiled your program prior to around 2002 and your DllMain function returns

FALSE in response to the DLL_PROCESS_ATTACH notification, then the C runtime code

says, “Oh, well, I guess I’m not running after all” and shuts itself down. When the kernel calls

the C runtime entry point with the DLL_PROCESS_DETACH notification, the C runtime says,

“Oh, I’m already shut down, thanks for asking” and returns immediately, which means that

your entry point is not called with the DLL_PROCESS_DETACH notification. In other words, if

you wrote your program prior to around 2002, the answer is No.

Sometime in 2002 or maybe 2003, the C runtime folks changed the behavior. If your

DllMain function returns FALSE in response to the DLL_PROCESS_ATTACH notification,

you will nevertheless get the DLL_PROCESS_DETACH notification. In other words, if you

https://devblogs.microsoft.com/oldnewthing/20080808-00/?p=21313

2/2

wrote your program after around 2002 or maybe 2003, then the answer is Yes. Why change?

Maybe they wanted to match the kernel behavior more closely, maybe they considered their

previous behavior a bug. You’ll have to ask them.

What does this mean for you, the programmer? Some people may look at this and conclude,

“Well, now that I know how each of the specific scenarios works, I can rely on knowing the

behavior that results from the scenario I’m in. For example, since I’m using Visual Studio

2008, the answer is Yes.” But I think that’s the wrong conclusion, because you usually do not

have total control over how your program is compiled and linked. You may share your code

with another project, and that other project may not know that you are relying on the

behavior of a specific version of Visual Studio 2008; they will compile your program with

Borland C++ version 5.5,¹ and now your program is subtly broken. My recommendation is to

write your DllMain function so that it works correctly regardless of which scenario it ends

up used in. (And since you shouldn’t be doing much in your DllMain function anyway, this

shouldn’t be too much of a burden.)

Footnote

¹I do not know what the behavior of Borland C++ version 5.5 is with respect to returning

FALSE from DllMain . I didn’t feel like doing the research to find a compiler whose

behavior is different from Visual Studio 2008, so I just picked one at random. I have a 50/50

chance of being right.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

