
1/3

August 13, 2008

The implementation of iterators in C# and its
consequences (part 2)

devblogs.microsoft.com/oldnewthing/20080813-00

Raymond Chen

Now that you have
the basic idea behind iterators
under your belt, you can already answer

some questions
on iterator usage.
Here’s a scenario based on actual events:

https://devblogs.microsoft.com/oldnewthing/20080813-00/?p=21253
http://blogs.msdn.com/oldnewthing/archive/2008/08/12/8849519.aspx

2/3

I have an iterator that is rather long and complicated,
so I’d like to refactor it.
For illustrative
purposes, let’s say that the enumerator
counts from 1 to 100 twice.
(In real life, of course, the
iterator will not be this simple.)

IEnumerable<int> CountTo100Twice()

{

int i;

for (i = 1; i <= 100; i++) {

 yield return i;

}
for (i = 1; i <= 100; i++) {

 yield return i;

}
}

As we learned in
Programming 101,
we can pull common code into a subroutine and call the
subroutine.
But when I do this, I get a compiler error:

IEnumerable<int> CountTo100Twice()

{

CountTo100();

CountTo100();

}

void CountTo100()

{

int i;

for (i = 1; i <= 100; i++) {

 yield return i;

}
}

What am I doing wrong?
How can I move the “count to 100” into a subroutine
and call it twice
from the CountTo100Twice function?

As we saw last time,
iterators are not coroutines.
The technique above would have worked

great had we
built iterators out of, say, fibers
instead of building them out of state machines.

As state machines, all yield return statements
must occur at the “top level”.
So how do

you iterate with the help of subroutines?

You make the subroutine its own iterator
and suck the results out from the main function:

http://en.wikipedia.org/wiki/101_%28number%29
http://blogs.msdn.com/oldnewthing/archive/2004/12/31/344799.aspx

3/3

IEnumerable<int> CountTo100Twice()

{

foreach (int i in CountTo100()) yield return i;

foreach (int i in CountTo100()) yield return i;

}

IEnumerable<int> CountTo100()

{

for (i = 1; i <= 100; i++) {

 yield return i;

}
}

Exercise:
Consider the following fragment:

foreach (int i in CountTo100Twice()) {

 …

}

Explain what happens on the 150th call to
 MoveNext() in the above loop.
Discuss its

consequences for recursive enumerators
(such as tree traversal).

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

