
1/4

August 27, 2008

What possible use are those extra bits in kernel handles?
Part 1: Sentinels

devblogs.microsoft.com/oldnewthing/20080827-00

Raymond Chen

Kernel handles are always a multiple of four;
the bottom two bits are available for

applications to use.
But why would an application need those bits anyway?

The short answer is extending the handle namespace.
The long answer will take a few days to

play out.
(This series was written in response to
Igor Levicki being unable to imagine “how

this can save anything
(in terms of performance)”.
Then again, who said that it had anything

to do with performance?
Actually, I’m surprised that my dear readers weren’t familiar
with

the techniques described in this series.
Perhaps I shouldn’t have written this series and

merely replied,
“If you can’t think of how this could be useful, then you are not
my target

audience.”
On the other hand, reader Aaargh! believes that
whoever thought to make the

bottom two bits of handles available to
applications
should receive an asswhooping.)

But we’ll start with a warm-up.
If you need some sentinel values for a HANDLE ,
you need to

make sure your chosen sentinel value will never
conflict with a valid HANDLE value.
If you

decide that your sentinel value is something like

// code in italics is wrong

#define DEBUGWINDOW_HANDLE ((HANDLE)0x1234)

then your program is going to start acting really strange
if the kernel ever gave you handle

value of 0x1234.
Knowing that kernel handles are always multiples of four
means that you

can choose a value that isn’t
a multiple of four and use it as your sentinel value.

#define DEBUGWINDOW_HANDLE ((HANDLE)0x1233)

Since 0x1233 is not a multiple of four, you can rest assured
that no actual kernel handle will

have this value,
and you can write your logging function like this:

https://devblogs.microsoft.com/oldnewthing/20080827-00/?p=21073
http://blogs.msdn.com/oldnewthing/archive/2005/01/21/358109.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/02/28/7925962.aspx#7939157
http://blogs.msdn.com/oldnewthing/archive/2008/06/06/8576557.aspx#8578571

2/4

void LogOutput(HANDLE hOutput, LPCVOID pv, DWORD cb)

{

if (hOutput == NULL) {

 // logging disabled

} else if (hOutput == DEBUGWINDOW_HANDLE) {

 AddToDebugWindow(pv, cb);

} else {

 DWORD cbWritten;

 WriteFile(hOutput, pv, cb, NULL, &cbWritten);

}
}

Since you can’t WriteFile to a window handle,
your logging function has to do something

special if somebody
decided that their output should go to the debug window.
But if they

chose to log to a normal kernel object (a file,
the console, a serial port, whatever) then you

can just write
the data to that kernel object.

You’ve already seen this before; you just didn’t realize it.
The special values for

INVALID_HANDLE_VALUE and
kernel pseudo-handles such as GetCurrentProcess
are not

multiples of four for exactly this reason.

Now, sure, you could have defined your own LogHandle
type and have all the logging go

through that type instead of just
logging to HANDLE s:

class LogHandle {

public:

 static LogHandle *GetDebugLogHandle();

 BOOL IsDebugWindow();

 HANDLE GetKernelHandle();

 static LogHandle *CreateFromKernelHandle(HANDLE KernelHandle);

 ~LogHandle() { }

private:

 LogHandle(BOOL IsDebugWindow, HANDLE KernelHandle);

 static LogHandle DebugWindow;

 BOOL IsLogToDebugWindow;

 HANDLE RegularKernelHandle;

};

Throughout, your program would use pointers to
 LogHandle s instead of actual handles,

using functions like these to convert between them:

http://msdn.microsoft.com/library/en-us/dllproc/base/getcurrentprocess.asp

3/4

// Does not take ownership of the handle

LogHandle::LogHandle(BOOL IsDebugWindow, HANDLE KernelHandle)

 : IsLogToDebugWindow(IsDebugWindow)

 , RegularKernelHandle(KernelHandle)

{

}

LogHandle LogHandle::DebugWindow(TRUE, NULL);

LogHandle* LogHandle::GetDebugWindowLogHandle()

{

 return &DebugWindow;

}

BOOL LogHandle::IsDebugWindow()

{

 return IsLogToDebugWindow;

}

HANDLE LogHandle::GetKernelHandle()

{

 assert(!IsDebugWindow());

 return RegularKernelHandle;

}

LogHandle *LogHandle::CreateFromKernelHandle(HANDLE KernelHandle)

{

 return new LogHandle(FALSE, KernelHandle);

}

Or you could make everybody pass two parameters instead of one.
For example, a class that

went

class SomeObject {

public:

 SomeObject(int SomeParameter, BOOL SomeParameter,

 HANDLE LogHandle);

…

private:

 …

 HANDLE LogHandle; // log to this handle

};

would have to change to

4/4

class SomeObject {

public:

 SomeObject(int SomeParameter, BOOL SomeParameter,

 BOOL LogToDebugWindow, HANDLE LogHandle);

…

private:

 …

 BOOL LogToDebugWindow; // if TRUE, log to window

 HANDLE LogHandle; // if not logging to window, then log to here

};

Either way is an awful lot of work just to define a sentinel value.
But still, at least you can

avoid the need for a sentinel value
by just passing more parameters.
But sometimes that

option isn’t available.
We’ll look at that next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

