
1/2

October 20, 2008

Why can’t you thunk between 32-bit and 64-bit Windows?
devblogs.microsoft.com/oldnewthing/20081020-00

Raymond Chen

It was possible to use generic thunks in 16-bit code to allow it to call into 32-bit code. Why

can’t we do the same thing to allow 32-bit code to call 64-bit code?

It’s the address space.

Both 16-bit and 32-bit Windows lived in a 32-bit linear address space. The terms 16 and 32

refer to the size of the offset relative to the selector.

Okay, I suspect most people haven’t had to deal with selectors (and that’s probably a good

thing). In 16-bit Windows, addresses were specified in the form of a selector (often

mistakenly called a “segment”) and an offset. For example, a typical address might be

0x0123:0x4567 . This means “The byte at offset 0x4567 relative to the selector 0x0123.”

Each selector had a corresponding entry in one of the descriptor tables which describes

things like what type of selector it is (can it be used to read data? write data? execute code?),

but what’s important here is that it also contained a base address and a limit. For example,

the entry for selector 0x0123 might say “0x0123 is a read-only data selector which begins at

linear address 0x00524200 and has a limit of 0x7FFF.” This means that the address

0x0123:n refers to the byte whose linear address is 0x00524200 + n, provided that n ≤

0x7FFF .

With the introduction of the 80386, the maximum limit for a selector was raised from

0xFFFF to 0xFFFFFFFF . (Accessing the bytes past 0xFFFF required a 32-bit offset, of

course.) Now, if you were clever, you could say “Well, let me create a selector and set its base

to 0x00000000 and its limit to 0xFFFFFFFF . With this selector, I can access the entire 32-

bit linear address space. There’s no need to chop it up into 64KB chunks like I had to back in

the 16-bit days. And then I can just declare that all addresses will be in this form and nobody

would have to bother specifying which selector to use since it is implied.”

And if you said this, then you invented the Win32 addressing scheme. It’s not that there are

no selectors; it’s just that there is effectively only one selector, so there’s no need to say it all

the time.

Now let’s look at the consequences of this for thunking.

https://devblogs.microsoft.com/oldnewthing/20081020-00/?p=20523
http://blogs.msdn.com/oldnewthing/archive/2005/07/20/440918.aspx#441290

2/2

First, notice that a full-sized 16-bit pointer and a 32-bit flat pointer are the same size. The

value 0x0123:0x467 requires 32 bits, and wow, so too does a 32-bit pointer. This means

that data structures containing pointers do not change size between their 16-bit and 32-bit

counterparts. A very handy coincidence.

Next, notice that the 16-bit address space is still fully capable of referring to every byte in the

32-bit address space, since they are both windows into the same underlying linear address

space. It’s just that the 16-bit address space can only see the underlying linear address space

in windows of 64KB, whereas the 32-bit address space can see it all at once. This means that

any memory that 32-bit code can access 16-bit code can also access. It’s just more

cumbersome from the 16-bit side since you have to build a temporary address window.

Neither of these two observations holds true for 32-bit to 64-bit thunking. The size of the

pointer has changed, which means that converting a 32-bit structure to a 64-bit structure and

vice versa changes the size of the structure. And the 64-bit address space is four billion times

larger than the 32-bit address space. If there is some memory in the 64-bit address space at

offset 0x000006fb`01234567 , 32-bit code will be unable to access it. It’s not like you can

build a temporary address window, because 32-bit flat code doesn’t know about these

temporary address windows; they abandoned selectors, remember?

It’s one thing when two people have two different words to describe the same thing. But if

one party doesn’t even have the capability of talking about that thing, translating between the

two will be quite difficult indeed.

P.S., like most things I state as “fact”, this is just informed speculation.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/08/10/4315707.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

