
1/3

November 6, 2008

Does version 6 of the common controls support ANSI or
not?

devblogs.microsoft.com/oldnewthing/20081106-00

Raymond Chen

I mentioned in passing a few years ago that version 6 of the common controls supports only

Unicode. And then other people stepped in to say, “Well, XYZ uses ANSI and that works for

me.” So does it support ANSI or doesn’t it?

It does and doesn’t.

All of the controls in the common controls library are internally Unicode. But not all controls

in the library are created equal.

The first group is the traditional common controls. List view, tree view, those guys. These

controls were never part of the window manager and have been internally Unicode on all

Windows NT platforms. The ANSI messages such as LVM_SETITEMA are implemented by

thunking to and from Unicode.

The second group is the controls that were traditionally part of the window manager itself. If

you aren’t using version 6 of the common controls, you will continue to use the versions built

into the window manager, and those versions, for the most part, are also internally Unicode.

The one weirdo is the edit control. The edit control uses black magic voodoo to tell whether

you created it with CreateWindowExA or CreateWindowExW , and its internal edit buffer is

ANSI or Unicode accordingly. (Regular window classes don’t have access to this magic

voodoo. It’s one of the historical weirdnesses of the edit control that date back to the old

days.)

The internal character set goes largely unnoticed since the window manager automatically

converts between Unicode and ANSI as necessary. For example, if you call

SetWindowTextA to a Unicode edit control, the window manager will convert the string

from ANSI to Unicode and send the Unicode string to the edit control. The one place the

internal character set becomes visible to the outside world is with the EM_GETHANDLE and

https://devblogs.microsoft.com/oldnewthing/20081106-00/?p=20303
http://blogs.msdn.com/oldnewthing/archive/2006/12/14/1285437.aspx
http://blogs.msdn.com/oldnewthing/archive/2007/08/20/4470527.aspx

2/3

EM_SETHANDLE messages, because these messages access the internal buffer of the edit

control. You therefore have to know whether your edit control is a Unicode or ANSI edit

control so you know the correct format of that internal buffer.

When these window manager controls were ported into the common controls library, the

voodoo was lost, since that magic is available only to internal window manager classes, and

the common controls aren’t internal window manager classes. Since the common controls

library uses RegisterClassW to register the window class, the edit control that comes with

the common controls is a Unicode edit control. In other words, if you use CreateWindowA

to create an edit control from the common controls library, and you send it a

EM_GETHANDLE message, the buffer you get back will be a Unicode buffer, not an ANSI one.

This wacky behavior with EM_GETHANDLE , as well as other even more subtle weirdnesses

that come from the edit control in the common controls library being always internally

Unicode means that code that calls CreateWindowA and expects the result to be an edit

control which is internally ANSI will be in for a bit of a surprise when they are using version

6 of the common controls library.

These and other subtle ANSI/Unicode discrepancies are why the common controls library,

starting with version 6, requires a Unicode application. If you’re an ANSI application and you

create controls from the common controls library, you may encounter strange behavior. It’ll

mostly work, but things may be weird at the fringe.

Now, why not just get rid of all the ANSI support entirely? Why leave it in, even though it

doesn’t quite work perfectly? For the same reason the Windows XP common controls are not

a separate library with separate window class names. As noted, there are programs that like

to go hunting around into windows that don’t belong to them. Some of those programs might

stumble upon one of Explorer’s list views and use various nefarious techniques to do things

like stealing strings from another program’s list view control. If support for the ANSI

messages such as LVM_GETITEMA were removed entirely, then those sneaky programs would

stop working.

You might say, “Well, tough for them.” You’ll say that until you discover that one of those

sneaky programs happens to be one that you use every day, possibly even one that you wrote

yourself. Oops. Now you’re going to tell all your friends, “Don’t upgrade to the next version of

Windows. Its compatibility sucks.”

Okay, so the common controls still have to be backward compatible with the ANSI messages

that existed in version 5. But at least the new messages such as LVM_SETINFOTIP can be

Unicode-only.

And it means that all you folks who are using version 6 of the common controls but haven’t

converted to Unicode are relying on a compatibility loophole. The ANSI support is there for

the old programs that thought they were talking to a version 5 common control; it isn’t there

http://blogs.msdn.com/oldnewthing/archive/2008/01/29/7294949.aspx
http://www.codeproject.com/threads/int64_memsteal.asp?df=100&forumid=29535&exp=0&select=1646056

3/3

for you.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

