
1/2

November 7, 2008

Self-esteem gone overboard: The perils of a global
namespace

devblogs.microsoft.com/oldnewthing/20081107-00

Raymond Chen

There are items with overly generic names. HANDLE , CloseHandle , GetObject ,

DIFFERENCE , query.exe . But their functionality doesn’t live up to their name. HANDLE

refers only to kernel handles, CloseHandle can only close kernel handles, GetObject

only gets information about GDI objects, DIFFERENCE applies only to the numerical

difference between group resources and standalone resources, and query.exe only queries

information about Terminal Services Remote Desktop Services.

Why do functions that operate only inside a specific realm have names that suggest a broader

scope?

Self-esteem gone bad.

You’re on the kernel team. You have a handle manager. What should you call your handles?

Well, since they’re handles, just call them HANDLE . Because that’s what they are, right? And

naturally the function that closes HANDLE s should be called CloseHandle . Sure, there are

other types of handles out there, but they don’t exist in your world. Your world is the kernel,

and in the kernel world, you can call them HANDLE s and everybody will know that you’re

talking about kernel handles because that’s why you’re in the kernel in the first place! Why

would somebody pass a handle to a non-kernel object to a kernel function? That makes no

sense!

Similarly, the GDI folks came up with their own object system, and naturally the way you get

information about an object is to call GetObject . There’s no confusion here, right? I mean,

this is GDI, after all. What other types of objects are there?

The Terminal Services Remote Desktop Services folks thought the same thing when they

created their query.exe program. Hey, this is a computer set up to run Remote Desktop

Services; of course you want to query information about Remote Desktop Services.

https://devblogs.microsoft.com/oldnewthing/20081107-00/?p=20283
http://blogs.msdn.com/ts/archive/2008/11/03/terminal-services-renamed-remote-desktop-services-at-teched-emea.aspx

2/2

Of course, when your symbol exists in a shared namespace, the context of your naming

decision becomes lost, and your generic-sounding function name (which worked just great

for generic operations in the world in which it was created) ends up carrying more meaning

than you originally intended.

Commenter Sean W. tries to explains that Unix doesn’t have this problem. “A Unix-flavored

close() system call can close any file descriptor.” This explanation ends up being its own

counter-argument. When you say that it can close any file descriptor, you’re admitting that it

can’t close anything. You can’t use close() to close the objects opened by opendir() or

dbm_open() or XtOpenDisplay .

“Well, yeah, but it can close any file descriptor regardless of where it came from.” And

CloseHandle works the same way: It can close any kernel handle regardless of where it

came from.

Sean W. later clarified that “the scope of close() is the system kernel, so it’s reasonable to

expect that it applies to kernel data and no other data, whereas the scope of CloseHandle is

all of Win32, including at least KERNEL/USER/GDI/ADVAPI.” Um, actually, the scope of

CloseHandle is also the kernel.

And in the category of “suggesting things that are already done” goes this comment from

Daniel, who suggests that the documentation explain which HANDLEs can be closed by

CloseHandle. Actually, if you look at each function that creates a handle, it also tells you the

function to use to close it. Not quite the same thing, but since you have to open something in

order to close it, you’ll find the information even sooner.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/05/01/587528.aspx#587944
http://blogs.msdn.com/oldnewthing/archive/2006/05/01/587528.aspx#588022
http://blogs.msdn.com/oldnewthing/archive/2006/05/01/587528.aspx#589287
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

