
1/3

December 29, 2008

Undecorating names to see why a function can’t be
found

devblogs.microsoft.com/oldnewthing/20081229-00

Raymond Chen

Here’s a problem inspired by actual events.

When I build my project, it compiles fine, but it fails during the
link step with an unresolved
external:

program.obj : error LNK2001: unresolved external symbol

“public: virtual wchar_t const * __thiscall

UILibrary::PushButton::GetName(class UILibrary::StringHolder * *)”

(?GetName@PushButton@UILibrary@@UAEPB_WPAPAVStringHolder@2@@Z)

The function I’m trying to call exists in the source code for
 uilibrary.lib ; I’m looking at
it right now.
And the definition in the source code matches the declaration
in the header file:

namespace UILibrary {

…
class PushButton {

public:

 virtual LPCWSTR GetName(StringHolder **Holder);

};

…
}

Why can’t the linker find it?
(Other functions in uilibrary.lib link just fine.)

In order to find something, you have to be looking in the right place,
and the thing you’re

looking for actually needs to be there.
(And you have to be able to see it when it’s there.)
The

first part, looking in the right place, appears to be addressed
by the parenthetical:
The linker

is definitely looking in uilibrary.lib
since it managed to find other things in that library.

Let’s look at the second step, then.
Is the thing you’re looking for really there?
I fired up a

little hex editor on uilibrary.lib ,
but you could use strings or, if you really want
to

get fancy, link /dump /headers .
I went looking for “GetName@PushButton” to see if the

member
function was actually in the library.

https://devblogs.microsoft.com/oldnewthing/20081229-00/?p=19693

2/3

And yup, the function is there.
But it looks slightly different:
 ?

GetName@PushButton@UILibrary@@UAEPBGPAPAVStringHolder@2@@Z .
(See if you can spot

the difference.)
Aha, the symbol couldn’t be found because it indeed doesn’t exist!
What does

exist is something that superficially resembles the
symbol we want, but which has different

decoration.
We ask the
undname program to convert this name
into something a bit more

readable:

C:\> undname ?GetName@PushButton@UILibrary@@UAEPBGPAPAVStringHolder@2@@Z

public: virtual unsigned short const * __thiscall

UILibrary::PushButton::GetName(class UILibrary::StringHolder * *)

Looking carefully at the two functions, we see that the
difference is that the one that

program.obj is looking for has a return type of wchar_t const * ,
whereas the one in the

library returns a
 unsigned short const * .

At this point the answer is obvious.
The library was compiled with the /Zc:wchar_t- * flag,

which disables wchar_t as a native type.
When that happens, the Windows header files

gives the
 wchar_t symbol the definition
 typedef unsigned short wchar_t;
On the

other hand, the customer’s project was being compiled
without that switch, in which case

wchar_t is
a native type and not an alias for unsigned short .

Now you know enough to solve this customer’s problem,
which is very similar to the previous

one:

When I build my project, it compiles fine, but it fails during the
link step with an unresolved
external:

program.obj : error LNK2019: unresolved external symbol

“long __cdecl UILibrary::Initialize(bool)”

(?Initialize@UILibrary@@YAJ_N@Z)

The function as it exists in the library undecorates as follows:

long __stdcall UILibrary::Initialize(bool)

Note

The undname program and the /Zc:wchar_t-
switches are specific to the Microsoft Visual

C++ compiler.
Naturally, if you use a different compiler, you should use the
utility or

command line switch appropriate to your compiler.
In particular, if you use the Visual Studio

development environment,
I’m told (but have not tried it myself)
that the switch you’re

looking for is called
“Treat wchar_t as a built-in type” on the “C/C++ Language”
property

page.

Raymond Chen

Follow

http://msdn2.microsoft.com/en-us/library/5x49w699(VS.80).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

