
1/3

January 1, 2010

Your program assumes that COM output pointers are
initialized on failure; you just don't realize it yet

devblogs.microsoft.com/oldnewthing/20100101-00

Raymond Chen

We saw last time that the COM rules for output pointers are that
they must be initialized on

return from a function,
even if the function fails.
The COM marshaller relies on this behavior,

but then again, so do you; you just don’t realize it yet.

If you use a smart pointer library (be it ATL
or boost or whatever), you are still relying on

output
pointers being NULL  when not valid,
regardless of whether or not the call succeeded.

Let’s look at this line of code from
that article about IUnknown::QueryInterface:

CComQIPtr<ISomeInterface> spsi(punkObj);

...

// spsi object goes out of scope


If the IUnknown::QueryInterface  method puts a
non- NULL  value in spsi  on failure,

then when spsi  is destructed, it’s going
to call IUnknown::Release  on itself,
and

something bad happens.
If you’re lucky, you will crash because the thing lying around in

spsi  was a garbage pointer.
But if you’re not lucky, the thing lying around in spsi 
might

be a pointer to a COM object:

// wrong!

HRESULT CObject::QueryInterface(REFIID riid, void **ppvObj)

{

 *ppvObj = this; // assume success since it almost always succeeds

 if (riid == IID_IUnknown || riid == IID_IOtherInterface) {

   AddRef();

   return S_OK;

 }

 // forgot to set *ppvObj = NULL

 return E_NOINTERFACE;

}


Notice that this code optimistically sets the output pointer to
itself, but if the interface is not

supported, it changes its mind
and returns E_NOINTERFACE  without setting the
output

pointer to NULL .
Now you have an elusive reference counting bug,
because the destruction

https://devblogs.microsoft.com/oldnewthing/20100101-00/?p=15443
http://blogs.msdn.com/oldnewthing/archive/2009/10/07/9904040.aspx


2/3

of spsi  will call
 CObject::Release ,
which will manifest itself by CObject  object
being

destroyed prematurely because you just over-released the object.
If you’re lucky, that’ll

happen relative soon;
if you’re not lucky, it won’t manifest itself for another half hour.

Okay, sure, maybe this is too obvious a mistake for
 CObject::QueryInterface , but any

method that
has an output parameter can suffer from this error,
and in those cases it might

not be quite so obvious:

// wrong!

HRESULT CreateSurface(const SURFACEDESC *psd,

                     ISurface **ppsf)

{

*ppsf = new(nothrow) CSurface();

if (!*ppsf) return E_OUTOFMEMORY;

HRESULT hr = (*ppsf)->Initialize(psd);

if (SUCCEEDED(hr)) return S_OK;

(*ppsf)->Release(); // throw it away

// forgot to set *ppsf = NULL

return hr;

}


This imaginary function
takes a surface description and tries to create a surface
that matches

it.
It does this by first creating a blank surface,
and then initializing the surface.
If that

succeeds, then we succeed;
otherwise, we clean up the incomplete surface and fail.

Except that we forgot to set *ppsf = NULL 
in our failure path.
If initialization fails, then we

destroy the surface,
and the pointer returned to the caller points to the
surface that we

abandoned.
But the caller shouldn’t be looking at that pointer because
the function failed,

right?

Well, unless the caller called you like this:

CComPtr<ISurface> spsf;

if (SUCCEEDED(CreateSurface(psd, &spsf))) {

...

}


If the surface fails to initialize, then spsf 
contains a pointer to a surface that has already

been deleted.
When the spsf  is destructed, it’s going to call
 ISurface::Release  on some

point that is no longer
valid, and bad things are going to happen.
This can get particularly

insidious when spsf  is
not a simple local variable but rather a member of
class which itself

doesn’t get destroyed for a long time.
The bad pointer sits in m_spsf  like a time bomb.

Although all the examples I gave here involve COM interface pointers,
the rule applies to all

output parameters.



3/3

CComBSTR bs;

if (SUCCEEDED(GetName(&bs)) { ... }

// -or-

CComVariant var;

if (SUCCEEDED(GetName(&var)) { ... }


In the first case, the the GetName  method had
better not leave garbage in the output BSTR

on failure,
because the CComBSTR 
is going to SysFreeString  in its destructor.
Similarly in

the second case with CComVariant 
and VariantClear .

So remember, if your function doesn’t want to return a value
in an output pointer, you still

have to return something in it.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

