
1/2

January 26, 2010

Microspeak: Zap
devblogs.microsoft.com/oldnewthing/20100126-00

Raymond Chen

You may hear an old-timer developer use the verb
zap.

That proposed fix will work.
Until everybody gets the fix,
they can just zap the assert.

The verb to zap means
to replace a breakpoint instruction
with an appropriate number of

NOP instructions
(effectively ignoring it).

The name comes from the old Windows 2.x kernel debugger.
(Actually, it may be even older,

but that’s as far back as I
was able to trace it.)
The Z (zap) command replaces the current

instruction with a NOP if it is an int 3
(the x86 single-byte breakpoint instruction),
or

replaced the previous instruction with NOPs if it is an
 int 1
(the x86 two-byte breakpoint

instruction).

This operation was quite common back in the days when
lots of code was written in assembly

language.
A technique used by some teams was to insert
a hard-coded breakpoint (called a

TRAP)
into every code path of a function.
Here’s an example (with comments and other

identifying characteristics
removed and new ones made up):

xyz8: mov bl,[eax].xyz_State

 cmp bl,XYZSTATE_IGNORE

 TRAPe

 je short xyz10 ; ignore this one

 or bl,bl

 TRAPe

 je short xyz11 ; end of table

 mov bh,[eax].xyz_Flags

 test bh,XYZFLAGS_HIDDEN

 TRAPz

 jz short xyz10 ; skip - item is hidden

 test bh,XYZFLAGS_MAGIC

 TRAPe

 je short gvl10 ; skip - not the magic item

 TRAP

 bts [esi].alt_flags,ALTFLAGS_SEENMAGIC

 TRAPc

 jc short xyz10 ; weird - we shouldn't have two magic items

https://devblogs.microsoft.com/oldnewthing/20100126-00/?p=15173

2/2

There were a variety of TRAP macros.
Here we see the one plain vanilla TRAP and a bunch

of fancy traps which trigger only when certain conditions are met.
For example, TRAPc

traps if the carry is set.
Here’s its definition:

TRAPc MACRO

 local l

 jnc short l

 int 3

l:
 ENDM

Hardly
rocket science.

When you became the person to trigger a particular code path for
the first time,
you would

trigger the trap, and you either stepped through
the code yourself or (if you weren’t familiar

with the code)
contacted the author of the code to verify that the code
successfully handled

this “never seen before” case.
When sufficiently satisfied that a code path operated as

expected,
the developer removed the corresponding TRAP
from the source code.

Of course, most TRAP s are removed before the code
gets checked in, but the ones related to

error handling or
recovering from data corruption
tend to remain
(such as here, where we

inserted a TRAP when we
encounter two magic items, which is theoretically impossible).

When you trigger one trap,
you usually trigger it a lot,
and you usually trigger a lot of related

traps as well.
The Z command was quite handy at neutering each
one after you checked that

everything was working.
You zapped the trap.

That’s why old-timers refer to patching out a hard-coded
breakpoint as zapping,
even though

the zap command hasn’t existed for over a decade.

Update:
As far as I can tell, the earlier uses of the word zap
referred to patching binaries,

not for removing hard-coded breakpoints after they stopped
in the debugger.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2008/03/03/7994007.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

