
1/2

March 16, 2010

Why does my control send its notifications to the wrong
window after I reparent it?

devblogs.microsoft.com/oldnewthing/20100316-00

Raymond Chen

Commenter MontagFTB noticed that some controls have the problem that if you reparent the

control, it still sends notifications to its old parent. We looked at the faulty diagnosis last

time. What’s the real reason?

The control cached its original parent window.

Most complex controls communicate with the parent window frequently, and in order to

avoid calling GetParent , the control gets its parent once and caches the value for future

use. Under normal conditions, this cache works very well since reparenting a window is

extremely rare and is generally considered an unusual condition. Like the adoption of a child,

it’s the sort of thing you should only be doing with the coordination of all three parties (the

old parent, the new parent, and the child).

When you reparent the control, the cached value in the child window is no longer correct. But

since you didn’t coordinate this with the child window, the control doesn’t know this, and it

keeps talking to the old parent. Unlike the Post Office, you can’t submit a change of address

form to the window manager and tell it, “Hey, if somebody tries to send a message to

windows X, deliver it to window Y if the return address is window Z.” (Actually, the Post

Office stops forwarding mail after one year.)

Since window reparenting is considered to be an unusual condition, most controls don’t have

provisions for telling them, “Hey, I reparented you. Please send future notifications to that

window over there.” The window manager is fine with all your reparenting games, but the

other participants may have made assumptions based on the stability of the window

hierarchy.

Where does that leave MontagFTB? (It is at this point where a general topic gradually turns

into addressing questions that are applicable only to MontagFTB’s situation and aren’t all

that useful to others. This is something I try to avoid, because this is a blog, not a consulting

service.)

https://devblogs.microsoft.com/oldnewthing/20100316-00/?p=14593
http://web.archive.org/web/20100130070610/http://blogs.msdn.com/oldnewthing/pages/407234.aspx#925651
https://devblogs.microsoft.com/oldnewthing/20100315-00/?p=14613

2/2

First, you can avoid the staging window and just create the controls with the correct parent. I

don’t know why the staging window was necessary, so this may not be a viable solution. If it

was merely to avoid flicker, then you can create the controls as hidden windows, and then do

a massive ShowWindow when they are ready. Or you can create the controls at negative

coordinates (so they don’t appear inside the parent’s client rectangle), and then when you’re

ready, perform a big EndDeferWindowPos to move them all into position at once.

If you really need to have the staging window, you can have the staging window do the

message forwarding. If it receives a WM_COMMAND or WM_NOTIFY notification message from

one of these given-away child windows, it just forwards the message to the new owner.

However, this violates the guideline that “When reparenting a window, the old parent, the

new parent, and the child all need to be involved in the process if you want the adoption to go

smoothly,” so I would not recommend it.

If you don’t want to make the staging window have to deal with message forwarding (for

example, if you intend on destroying the staging window once you have removed all the child

windows), then you can insert a level of redirection: Create a container window as a child of

the staging window, and create the child windows as children of the container. Then when it’s

time to reparent the controls, move the container window to the new parent. This adheres to

the guideline because the windows involved in the reparenting (the final destination, the

staging window, and the container window) are all under your control, and therefore you can

make sure all internal state is correct when you change the bookkeeping relationship among

them. And since the controls are destined for a dialog box, you should give the container the

WS_EX_CONTROLPARENT style so that they can participate in dialog box navigation.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20050706-26/?p=35023
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

