
1/3

March 26, 2010

WaitForInputIdle waits for any thread, which might not be
the thread you care about

devblogs.microsoft.com/oldnewthing/20100326-00

Raymond Chen

We saw last time that the WaitForInputIdle function waits only once for a process to go

input idle. Even if the process later stops processing messages, WaitForInputIdle will

return immediately and say, “Yeah, he’s idle.”
The way a process is determined to be input

idle is that it is waiting for user input when there is none. This translates into the process

sitting in a function like GetMessage or WaitMessage when there are no messages. But

what if a process has more than one thread? And what if one of the threads is waiting for

input, while the other is busy and unresponsive? The WaitForInputIdle function will treat

the process as having gone input idle, even if the ready thread is just displaying your splash

screen and the busy thread is the one preparing the main window. The WaitForInputIdle

function doesn’t know that the main window is more important than the splash screen; as far

as the window manager is concerned, you’ve got two threads, each with a window.
What this

means for your application is that you need to know that, if you create multiple threads, then

the moment any of them goes input idle, the entire process is treated as input idle, and you

need to be ready for people who were waiting for you via WaitForInputIdle to start trying

to talk to your application.
As I noted last time, the WaitForInputIdle function is really

just a stopgap to help with the transition from 16-bit Windows to 32-bit Windows. Whereas

16-bit programs could just charge ahead knowing that the program it launched is ready

(because if it weren’t ready, then it would still have control of the CPU), 32-bit programs

need to wait for this faked-up version of Yield . And since it was created merely to aid in

porting 16-bit programs, the WaitForInputIdle function didn’t really worry about

multiple threads. After all, 16-bit Windows didn’t support multiple threads per process, so all

16-bit programs were necessarily single-threaded. If you’re porting one of these programs,

your initial 32-bit version is also going to be single-threaded. (At least I hope you’re not going

to try to add multiple threads right off the bat. The first step in porting is just to get the

program to run without adding any new features!)
In fact, back in the old days, the

WaitForInputIdle function tried a bit too hard to emulate the Yield behavior from 16-

bit Windows. When the target application received a message, it was taken out of the input

idle state, and went back into the state when it once again reached a state where it was

waiting for input. In other words, the one-line summary of the WaitForInputIdle function

was actually correct at the time it was written.
The old mechanism for WaitForInputIdle ,

https://devblogs.microsoft.com/oldnewthing/20100326-00/?p=14483
http://blogs.msdn.com/oldnewthing/archive/2010/03/25/9984720.aspx
http://blogs.msdn.com/michkap/archive/2008/09/24/8963238.aspx

2/3

taking the process in and out of the input idle state, mirrored the 16-bit behavior of

Windows, but only if you had a single-threaded application. If you had multiple threads,

then the input-idle state starts getting all wonky as each thread updates the global idle state:

Thread 1 Thread 2

1 Busy Busy

2 Idle

(application marked as idle)

3 Idle

(application marked as idle)

4 Busy

(application marked as busy)

5 Busy

(application marked as busy)

There is only one state that gets updated by each thread as they go idle or busy. All you really

know is that if all threads are busy, then the input idle state will be busy and that if all

threads are idle, then the input idle state will be idle. But if one thread is idle and the other is

busy, then the process idle state is unpredictable; it depends on what the most recent

transition was. For example, notice that at step 2, we have one idle thread (thread 1) and one

busy thread (thread 2), and the process is marked idle. On the other hand, at step 4, we also

have one idle thread (thread 2) and one busy thread (thread 1), but this time, the process is

marked busy.
Of course, since this behavior was intended to mimic the 16-bit programming

model, the fact that it got all confused when applications created multiple threads was “out of

scope”. Creating multiple threads meant that you have gone past the simple “Just trying to

get it to work” stage and have moved on to adding Win32-specific enhancements. You were

creating a situation that the WaitForInputIdle function was not designed to handle.
My

guess is that the unpredictable nature of the original design led the window manager folks to

take a deep breath and go back to the spirit of the WaitForInputIdle function: To tell

when a program has finished its initialization.

So now it decides that when you’ve finished initialization, you’ve finished initialization. It’s a

one-way door.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

