
1/3

May 10, 2010

Why can programs empty the clipboard when they start
up?

devblogs.microsoft.com/oldnewthing/20100510-00

Raymond Chen

Via the Suggestion Box,
Johan Almén
asks,
“What was the rationale behind the decision to
let

Excel empty the clipboard when launched?”

Why can an application empty the clipboard?
Because it’s there.

After all, the point of the clipboard is to hold information
temporarily.
Programs are

permitted to empty the clipboard, add data to the clipboard,
or retrieve data from the

clipboard.
That’s why it’s there.

(I’m assuming that the naming of the program Excel was just
an example of a program, and

that the question wasn’t
“Why doesn’t Windows have a specific check for the program

EXCEL.EXE and block its clipboard access while
still allowing clipboard access to everybody

else.”)

Okay, maybe the question wasn’t so much
“Why are programs allowed to empty the

clipboard”
as it was
“Why are programs allowed to empty the clipboard when they launch?”

Well, because that might have been the whole point of the program!
Somebody might write a

program called emptyclip whose
sole purpose in life is to empty the clipboard.
You run the

program, it empties the clipboard,
and then it exits.
Short and sweet.
If Windows didn’t allow

programs to empty the clipboard when
they started up, then this program would not be able

to get its
work done.

You might not consider that particularly useful,
but there are actually quite a few programs

which empty the
clipboard when they start up.
For example, the clip program that comes

with Windows takes its standard input and places it on the clipboard.
Implied in that

functional description is that it erases what used
to be on the clipboard.
Everything the

program does is in its startup.

echo I'm on the clipboard! And I erased what use to be there.| clip

https://devblogs.microsoft.com/oldnewthing/20100510-00/?p=14093
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#1434973

2/3

Many scripting languages provide access to the clipboard,
if not natively, then through an

extension.
Since these are typically
not GUI programs, as far as the window manager can tell,

these programs as perpetually stuck in their startup code:
They never go input idle because

they never pump messages.
Prohibiting programs from accessing the clipboard during

startup means that console programs are effectively banned
from modifying the clipboard at

all.

Okay, maybe the question wasn’t
“Why are programs allowed to empty the clipboard when

they launch?”
so much as it was
“Why are programs allowed to empty the clipboard outside

of an explicit user action (like a click or a hotkey)?”
Well, we still have the problem of

programs whose design is to
empty the clipboard without any user interaction,
like all those

console scripts.
But you also remove many GUI usage patterns, such as pushing
work to a

background thread
so that the program can remain responsive.
And it would also prevent you

from writing a program that
modified the clipboard in response to a drop operation.
I can

imagine a program called filecontentstoclip
which just sits there and waits for you to

drag/drop a file
onto its window.
When you do that, it opens the file and places the file’s

contents onto the clipboard.
Since the drag/drop operation is handled by the drag source,
the

drop target receives no input and (according to the
rule of “no clipboard access without user

input”) is denied
permission to erase the old clipboard contents.

In order for these sorts of interaction models to work,
there would have to be some sort of

AllowClipboardAccess
function (akin to AllowSetForegroundWindow)
so that one

process can temporarily
transfer clipboard access permission
to another process.
It could be

done, but it would make writing applications more
complicated,
because you would have to

anticipate what operations
might result in another application wanting to access the

clipboard and scattering calls to AllowClipboardAccess
in various places in your

program.
If you miss a spot, you’ll get some bug filed against your
program that says,
“When

I click the Preview button,
and I’ve set my custom previewer to program X
and configure

program X to say ‘always copy image
to clipboard when previewing’, the feature doesn’t

work.”

The clipboard was part of Windows 1.0,
and back in those days, you didn’t have a lot of

memory available.
You had to get a lot done with very little.
Programmers were trusted to use

their great power
with great responsibility.
And besides, as we saw with programs like
 clip

(and hypothetical programs like
 emptyclip and
 filecontentstoclip),
allowing

programs to empty the clipboard at startup
made it possible to write some interesting and

useful tools.
Windows historically didn’t stop programmers from doing stupid things
because

that would also prevent them from doing
clever things.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/08/09/693280.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

