
1/2

May 27, 2010

When will the window manager destroy a menu
automatically, and when do I need to do it manually?

devblogs.microsoft.com/oldnewthing/20100527-00

Raymond Chen

Our old friend Norman Diamond wonders
when you are supposed to destroy a menu and

when you are
supposed to let Windows destroy it.

The rules for when the window manager implicitly destroys
menus are actually not that

complicated.

If a window is destroyed, the menus attached to the window are also
destroyed:

Attached as the menu bar
(GetMenu / SetMenu)

Attached as the system menu (GetSystemMenu)

If a menu is destroyed, its submenus are also destroyed.

If you replace a MIIM_SUBMENU submenu,
the old menu is destroyed.

If you pass bRevert = TRUE
to GetSystemMenu ,
then the old system menu is

destroyed and a clean system menu
is created in its place.

Outside of the above situations,
you are on your own.

Of course, when I write that “you are on your own”
I do not mean that “every code which sees

a menu is responsible for
destroying it.”
If that were the case, you would have a disaster as

the slightest
passing breeze would cause people to call DestroyMenu all
over the place.

Rather, I mean that in all other cases,
you need to “work it out amongst yourselves”
who is

responsible for destroying the menu.
Typically, the person who creates the menu takes

responsibility for
destroying it, although that responsibility can be handed off
based on

mutual agreement between the creator and another component.

The original question did include a misunderstanding:

If the old object belonged to a window class,
and we destroy the old object,
how do we know
that other windows of the same class
aren’t going to get in trouble?

The mistaken belief here is that each window of a class
shares the same menu.
If that were

true,
then if a program created two windows of the same class,
modifications to one window’s

menu would affect the other.
You can see that this is not true by inspection,
or at least it was

https://devblogs.microsoft.com/oldnewthing/20100527-00/?p=13903
http://blogs.msdn.com/oldnewthing/archive/2006/06/15/632243.aspx#633541

2/2

easier back in 1995.
On Windows 95, open two Explorer windows,
and set them into different

views.
The two windows now have different menus:
One of them has a bullet next to the

Large Icons menu item,
whereas the other has a bullet next to Details.

When you register a window class, you pass in the
menu you want, but only in the form of a

template:

 WNDCLASS wc;

 ...

 wc.lpszMenuName = MAKEINTRESOURCE(...);

There is no menu yet, just a description of how to create a menu
when the time comes.
When

you create a window from this class,
the window manager initializes the menu by doing the

equivalent of

 SetMenu(hwnd, LoadMenu(pWndClass->hInstance,

 pWndClass->lpszMenuName));

Each window gets a fresh menu from the specified menu template.
Once that’s done,
you can

change it all you want; it won’t affect any the menus
associated with any other windows.

The system menu works the same way:
Every window starts out with a default system menu,

and when you call GetSystemMenu
with bRevert = FALSE ,
you get a handle to that

system menu,
which you can modify to your heart’s content without affecting
any other

menus.
System menus have this additional wrinkle where you can pass
with bRevert =

TRUE
to ask the window manager to destroy the current system menu
and replace it with a

fresh new default system menu.

Exercise:
How would you accomplish the logical equivalent of
 GetSystemMenu(TRUE) for

the menu bar menu?

Bonus chatter:
While the system menu certainly behaves as I described it above,
there’s

actually a little bit of optimization going on under
the hood.
We’ll look at that
next time.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/05/28/10016691.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

