
1/3

June 17, 2010

As random as I wanna be: Why cmd.exe's %RANDOM%
isn't so random

devblogs.microsoft.com/oldnewthing/20100617-00

Raymond Chen

Somebody on my team reported that
a particular script in our project’s build process
would

fail with bizarre output maybe
once in fifty tries.
This script was run from a makefile ,
and

the result was a failed build.
Rerunning make fixed the problem,
but that’s not much

consolation when the build lab encounters it
approximately every other day.
The strange

thing about the bizarre output was that it appeared
to contain a mix of two different runs.

How could the output of two runs be mixed into one output file?

The script was a batch file, and it generated its output in
a few different steps,
storing the

intermediate output in randomly-named temporary files,
taking advantage of the
%RANDOM%

pseudovariable to generate the name of those temporary files.
(They were

%TEMP%\%RANDOM%.tmp1 ,
 %TEMP%\%RANDOM%.tmp2 , you get the idea.)

Cutting to the chase: The reason for the mixed output was that
the %RANDOM%  pseudo-

variable wasn’t random enough.
If two copies of the script are running at the same time,
they

will get the same “random” number and end up
mixing their output together.
(And running

multiple builds at the same time is something the
people in the build lab are wont to do.)

It turns out that the Windows command processor uses
the standard naïve algorithm for

seeding the random number generator:

  srand((unsigned)time(NULL));


Since time  has a resolution of one second,
two command prompts launched in rapid

succession have a good
chance of seeding the random number generator with the same

timestamp, which means that they will have the same random number
stream.

https://devblogs.microsoft.com/oldnewthing/20100617-00/?p=13673
http://technet.microsoft.com/en-us/library/bb490954.aspx
http://taeb-nethack.blogspot.com/2009/03/predicting-and-controlling-nethacks.html


2/3

C> copy con notsorandom.cmd

@pause

@echo %RANDOM%

^Z
       1 file(s) copied.

C> for /l %i in (1,1,3000) do @cmd /c notsorandom.cmd

// hold down the space bar

Press any key to continue . . .

14153

Press any key to continue . . .

14153

Press any key to continue . . .

14153

Press any key to continue . . .

14153

Press any key to continue . . .

14156

Press any key to continue . . .

14156

Press any key to continue . . .

14156

Press any key to continue . . .

14156

Press any key to continue . . .

14156

Press any key to continue . . .

14160

Press any key to continue . . .

14160

Press any key to continue . . .

14160


Notice that the %RANDOM%  pseudovariable generates
the same “random” number until the

clock ticks over another second.
(Notice also that the “random” numbers don’t look all that

random.)

We fixed the script so it generated its temporary file in the
project’s output directory rather

than in the (shared) %TEMP% 
directory.
That way, even if two copies of the project are

building at the same
time, they will generate their temporary files in different directories
and

not step on each other.

Exercise: There is much subtlety in that for 
command.
Describe alternative formulations

of the for  command,
both those that work and those that don’t.
To get you started: Explain

the output of this variation:

for /l %i in (1,1,300) do @(pause&echo %RANDOM%)




3/3

Obligatory batch file bashing:
Every time I write an entry about batch files,
you can

count on people complaining about how insane
the batch programming language is.
The

batch language wasn’t designed; it evolved.
(And according to commenter Daev,
it followed a

form of parallel evolution from what most people
are familiar with.)
I doubt anybody actually

enjoy writing batch files.
At best you tolerate it.
I’m just trying to make it slightly more

tolerable.
I bet these are the same people who complain to their tax preparer
about the

complexity of tax law.







http://blogs.msdn.com/b/oldnewthing/archive/2008/08/06/8835317.aspx#8841279

