
1/5

August 10, 2010

Everybody thinks about CLR objects the wrong way (well
not everybody)

devblogs.microsoft.com/oldnewthing/20100810-01

Raymond Chen

Many people responded to
Everybody thinks about garbage collection the wrong way
by

proposing variations on auto-disposal based on scope:

“Any local variable that is IDisposable should
dispose itself when it goes out of scope.”

“You should be able to attach an attribute to a class that says
the destructor should be

called immediately after leaving scope.”

“It should have
promised to call finalizers on scope exit.”

What these people fail to recognize is that they are dealing
with object references, not

objects.
(I’m restricting the discussion to reference types, naturally.)
In C++, you can put an

object in a local variable.
In the CLR, you can only put an object reference
in a local variable.

For those who think in terms of C++, imagine if it were impossible to
declare instances of

C++ classes as local variables on the stack.
Instead, you had to declare a local variable that

was a pointer
to your C++ class, and put the object in the pointer.

C# C++

void Function(OtherClass o)

{

// No longer possible to declare
objects

// with automatic storage duration

Color c(0,0,0);

Brush b(c);

o.SetBackground(b);

}

https://devblogs.microsoft.com/oldnewthing/20100810-01/?p=13183
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx#10048023
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx#10047975
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx#10047964

2/5

void
Function(OtherClass o)

{

Color c = new
Color(0,0,0);

Brush b = new
Brush(c);

o.SetBackground(b);

}

void Function(OtherClass* o)

{

Color* c = new Color(0,0,0);

Brush* b = new Brush(c);

o->SetBackground(b);

}

This world where you can only use pointers to refer to objects
is the world of the CLR.

In the CLR,
objects never go out of scope because objects don't have scope.¹
Object

references have scope.
Objects are alive from the point of construction to the point
that the

last reference goes out of scope or is otherwise destroyed.

If objects were auto-disposed when references went out of scope,
you'd have all sorts of

problems.
I will use C++ notation instead of CLR notation to emphasize
that we are working

with references, not objects.
(I can't use actual C++ references since you cannot change the

referent
of a C++ reference, something that is permitted by the CLR.)

C# C++

void
Function(OtherClass o)

{

Color c = new
Color(0,0,0);

Brush b = new
Brush(c);

Brush b2 = b;

o.SetBackground(b2);

}

void Function(OtherClass* o)

{

Color* c = new Color(0,0,0);

Brush* b = new Brush(c);

Brush* b2 = b;

o->SetBackground(b2);

// automatic disposal when variables go out of
scope

dispose b2;

dispose b;

dispose c;

dispose o;

}

Oops, we just double-disposed the Brush object
and probably prematurely disposed the

OtherClass object.
Fortunately, disposal is idempotent, so the double-disposal is
harmless

(assuming you actually meant disposal and not destruction).
The introduction of b2 was

artificial in this example,
but you can imagine
 b2 being, say, the leftover value in a variable

at the end of a loop, in which case we just accidentally
disposed the last object in an array.

Let's say there's some attribute you can put on a local variable or
parameter to say that you

don't want it auto-disposed on scope exit.

3/5

C# C++

void Function([NoAutoDispose]
OtherClass o)

{

Color c = new Color(0,0,0);

Brush b = new Brush(c);

[NoAutoDispose] Brush b2 = b;

o.SetBackground(b2);

}

void Function([NoAutoDispose] OtherClass* o)

{

Color* c = new Color(0,0,0);

Brush* b = new Brush(c);

[NoAutoDispose] Brush* b2 = b;

o->SetBackground(b2);

// automatic disposal when variables go out
of scope

dispose b;

dispose c;

}

Okay, that looks good. We disposed the Brush object
exactly once and didn't prematurely

dispose the OtherClass
object that we received as a parameter.
(Maybe we could make

[NoAutoDispose] the default
for parameters to save people a lot of typing.)
We're good,

right?

Let's do some trivial code cleanup, like inlining the Color
parameter.

C# C++

void Function([NoAutoDispose]
OtherClass o)

{

Brush b = new Brush(new
Color(0,0,0));

[NoAutoDispose] Brush b2 = b;

o.SetBackground(b2);

}

void Function([NoAutoDispose] OtherClass* o)

{

Brush* b = new Brush(new Color(0,0,0));

[NoAutoDispose] Brush* b2 = b;

o->SetBackground(b2);

// automatic disposal when variables go out
of scope

dispose b;

}

Whoa, we just introduced a semantic change by what seemed like a harmless
transformation:

The Color object is no longer auto-disposed.
This is even more insidious than
the scope of

a variable affecting its treatment by anonymous closures,
for introduction of temporary

variables to break up a complex expression
(or removal of one-time temporary variables) are

common transformations
that people expect to be harmless,
especially since many language

transformations are expressed in terms
of temporary variables.
Now you have to remember

to tag all of your temporary variables with
 [NoAutoDospose] .

Wait, we're not done yet.
What does SetBackground do?

C# C++

http://blogs.msdn.com/b/oldnewthing/archive/2006/08/04/688527.aspx

4/5

void
OtherClass.SetBackground([NoAutoDispose
] Brush b)

{

this.background = b;

}

void
OtherClass::SetBackground([NoAutoDispose]
Brush* b)

{

this->background = b;

}

Oops, there is still a reference to that Brush in the
 o.background member.
We disposed

an object while there were still outstanding
references to it.
Now when the OtherClass

object tries to use
the reference, it will find itself operating on a
disposed object.

Working backward, this means that we should have put a
 [NoAutoDispose] attribute on

the b
variable.
At this point, it's six of one, a half dozen of the other.
Either you put using

around all the things
that you want auto-disposed or you put [NoAutoDispose]
on all the

things that you don't.²

The C++ solution to this problem is to use something like
 shared_ptr and reference-

counted objects,
with the assistance of weak_ptr to avoid reference cycles,
and being very

selective about which objects are allocated
with automatic storage duration.
Sure, you could

try to bring this model of programming to the CLR,
but now you're just trying to
pick all the

cheese off your cheeseburger
and intentionally going against the automatic memory

management
design principles of the CLR.

I was sort of assuming that since you're here for CLR Week,
you're one of those people who

actively chose to use the CLR
and want to use it in the manner in which it was intended,

rather than somebody who wants it to work like C++.
If you want C++, you know where to

find it.

Footnote

¹ Or at least don't have scope in the sense we're discussing here.

² As for an attribute for specific classes to have
auto-dispose behavior,
that works only if all

references to auto-dispose objects are
in the context of a create/dispose pattern.
References

to auto-dispose objects outside of the create/dispose pattern
would need
to be tagged with

the [NoAutoDispose] attribute.

http://blogs.msdn.com/b/oldnewthing/archive/2007/07/12/3821577.aspx

5/5

[AutoDispose] class Stream { ... };

Stream MyClass.GetSaveStream()

{

[NoAutoDispose] Stream stm;

if (saveToFile) {

 stm = ...;

} else {

 stm = ...;

}
return stm;

}

void MyClass Save()

{

// NB! do not combine into one line

Stream stm = GetSaveStream();

SaveToStream(stm);

}

