
1/4

August 10, 2010

When does an object become available for garbage
collection?

devblogs.microsoft.com/oldnewthing/20100810-00

Raymond Chen

As we saw last time,
garbage collection is a method for
simulating an infinite amount of

memory
in a finite amount of memory.
This simulation is performed by reclaiming memory

once the environment
can determine that the program wouldn’t notice that the memory was

reclaimed.
There are a variety of mechanism for determining this.
In a basic tracing collector,

this determination is made by taking the objects which the
program has definite references

to, then tracing references from those
objects, contining transitively until all accessible

objects are found.
But what looks like a definite reference in your code may not actually
be a

definite reference in the virtual machine:
Just because a variable is in scope doesn’t mean

that it is live.

class SomeClass {

...

string SomeMethod(string s, bool reformulate)

{
 OtherClass o = new OtherClass(s);

 string result = Frob(o);

 if (reformulate) Reformulate();

 return result;

}
}

For the purpose of this discussion,
assume that the Frob method does not retain a

reference
to the object o passed as a parameter.
When does the OtherClass object o

become eligible for collection?
A naïve answer would be that it becomes eligible for collection

at the closing-brace of the SomeMethod method,
since that’s when the last reference (in the

variable o)
goes out of scope.

A less naïve answer would be that it become eligible for collection
after the return value from

Frob is stored to the local
variable result , because that’s the last line of code which
uses

the variable o .

https://devblogs.microsoft.com/oldnewthing/20100810-00/?p=13193
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx

2/4

A closer study would show that it becomes eligible for collection
even sooner:
Once the call to

Frob returns,
the variable o is no longer accessed,
so the object could be collected even

before the result of the call
to Frob is stored into the local variable result .
Optimizing

compilers have known this for quite some time,
and there is a strong likelihood that the

variables
 o and result
will occupy the same memory since their lifetimes do not overlap.

Under such conditions,
the code generation for the statement could very well be something

like this:

 mov ecx, esi ; load "this" pointer into ecx register

 mov edx, [ebp-8] ; load parameter ("o") into edx register

 call SomeClass.Frob ; call method

 mov [ebp-8], eax ; re-use memory for "o" as "result"

But this closer study wasn’t close enough.
The OtherClass object o
becomes eligible for

collection even before the call to Frob
returns!
It is certainly eligible for collection at the

point of the ret
instruction which ends the Frob function:
At that point,
the Frob has

finished using the object and won’t access
it again.
Although somewhat of a technicality, it

does illustrate that

An object in a block of code
can become eligible for collection during execution of a function
it
called.

But let’s dig deeper.
Suppose that Frob looked like this:

string Frob(OtherClass o)

{

string result = FrobColor(o.GetEffectiveColor());

}

When does the OtherClass object become eligible for
collection?
We saw above that it is

certainly eligible for collection as soon as
 FrobColor returns, because the Frob
method

doesn’t use o any more after that point.
But in fact it is eligible for collection when the call

to GetEffectiveColor returns—even before the
 FrobColor method is called—because

the Frob
method doesn’t use it once it gets the effective color.
This illustrates that

A parameter to a method can become eligible for collection
while the method is still executing.

But wait, is that the earliest the OtherClass object
becomes eligible for collection?
Suppose

that the OtherClass.GetEffectiveColor method
went like this:

3/4

Color GetEffectiveColor()

{

Color color = this.Color;

for (OtherClass o = this.Parent; o != null; o = o.Parent) {

 color = BlendColors(color, o.Color);

}
return color;

}

Notice that the method doesn’t access any members from its this
pointer after the

assignment o = this.Parent .
As soon as the method retrieves the object’s parent,
the

object isn’t used any more.

 push ebp ; establish stack frame

 mov ebp, esp

 push esi

 push edi

 mov esi, ecx ; enregister "this"

 mov edi, [ecx].color ; color = this.Color // inlined

 jmp looptest

loop:

 mov ecx, edi ; load first parameter ("color")

 mov edx, [esi].color ; load second parameter ("o.Color")

 call OtherClass.BlendColors ; BlendColors(color, o.Color)

 mov edi, eax

looptest:

 mov esi, [esi].parent ; o = this.Parent (or o.Parent) // inlined

 // "this" is now eligible for collection

 test esi, esi ; if o == null

 jnz loop ; then rsetart loop

 mov eax, edi ; return value

 pop edi

 pop esi

 pop ebp

 ret

The last thing we ever do with the OtherClass
object (presented in the GetEffective‐

Color
function by the keyword this)
is fetch its parent.
As soon that’s done
(indicated at

the point of the comment, when the line is reached
for the first time),
the object becomes

eligible for collection.
This illustrates the perhaps-surprising result that

An object can become eligible for collection
during execution of a method on that very object.

In other words, it is possible for a method to have its
 this object collected out from under

it!

A crazy way of thinking of when an object becomes eligible for
collection is that it happens

once
memory corruption in the object
would have no effect on the program.
(Or, if the object

has a finalizer, that memory corruption would
affect only the finalizer.)
Because if memory

4/4

corruption would have no effect,
then that means you never use the values any more,
which

means that the memory may as well have been
reclaimed out from under you for all you

know.

A weird real-world analogy:
The garbage collector can collect your diving board as soon as

the
diver touches it for the last time—even if the diver is still
in the air!

A customer encountered the
 CallGCKeepAliveWhenUsingNativeResources
FxCop rule

and didn’t understand how it was possible for the GC to
collect an object while one of its

methods was still running.
“Isn’t this part of the root set?”

Asking whether any particular value is or is not part of the root
set is confusing the definition

of garbage collection with its
implementation.
“Don’t think of GC as tracing roots.
Think of

GC as removing things you aren’t using any more.”

The customer responded,
“Yes, I understand conceptually that it becomes eligible for

collection, but how does the garbage collector know that?
How does it know that the this

object is not used
any more?
Isn’t that determined by tracing from the root set?”

Remember, the GC is in cahoots with the JIT.
The JIT might decide to “help out” the GC by

reusing the stack slot which previously held an object
reference,
leaving no reference on the

stack and therefore no reference
in the root set.
Even if the reference is left on the stack, the

JIT can leave
some metadata behind that tells the GC, “If you see the instruction
pointer in

this range, then ignore the reference in this slot
since it’s a dead variable,”
similar to how in

unmanaged code on non-x86 platforms, metadata
is used to guide structured exception

handling.
(And besides, the this parameter isn’t even passed
on the stack in the first

place.)

The customer replied, “Gotcha. Very cool.”

Another customer asked,
“Is there a way to get a reference to the instance being called
for

each frame in the stack? (Static methods excepted, of course.)”
A different customer asked

roughly the same question, but in
a different context:
“I want my method to walk up the

stack, and if its caller is
 OtherClass.Foo , I want to get the this
object for

OtherClass.Foo so I can query additional
properties from it.”
You now know enough to

answer these questions yourself.

Bonus:
A different customer asked,
“The StackFrame object lets me get the method that
is

executing in the stack frame,
but how do I get the parameters passed to that method?”

