
1/3

August 17, 2010

What was that story about the WinHelp pen-writing-in-
book animation?

devblogs.microsoft.com/oldnewthing/20100817-00

Raymond Chen

The first time you open a WinHelp file,
you get this pen-writing-in-book animation while

WinHelp
does um something which it passes off as
preparing Help file for first use or

something
similarly vague.

I remember a conversation about that animation.
The Windows shell team suggested to the

author of WinHelp that
the program use the shell common animation control to display
that

animation.
After all, it’s a short animation and it met
the requirements for the animation

common control.
But the author of WinHelp rejected the notion.

(Pre-emptive “I can’t believe I had to write this”:
This conversation has been exaggerated for

effect.)

“Your animation control is so huge and bloated.
I can do it much smaller and faster myself.

The RLE animation format generates frames by
re-rendering the pixels that have changed,

which means that at each frame of the animation,
a new pen image would be recorded in the

AVI file.
The pen cycles through three different orientations at each location,
there are ten

locations on each row,
and there are four rows.
If I used an RLE animation, that’d be

3 × 10 × 4 = 120
copies of the pen bitmap.
Instead, I have just three pen bitmaps, and I

manually draw
them at the appropriate location for each frame.
Something like this:

https://devblogs.microsoft.com/oldnewthing/20100817-00/?p=13133
http://blogs.msdn.com/oldnewthing/archive/2005/02/16/374397.aspx

2/3

// NOTE: For simplicity, I'm ignoring the "turn the page" animation

void DrawFrame(int frame)

{

 // Calculate our position in the animation

 int penframe = frame % 3; // 3 pen images per location

 int column = (frame / 3) % 10; // 10 columns per row

 int row = (frame / 30) % 4; // 4 rows

 int i;

 POINT pt;

 DrawBlankPage(0, 0); // start with a blank sheet of paper

 // Draw the "text" that the pen "wrote" in earlier rows

 for (i = 0; i < row; i++) {

 DrawTextScribble(i, 0, 9);

 }

 // Draw the partially-completed row that the pen is on now

 DrawTextScribble(row, 0, column);

 // Position the pen image so the pen tip hits the "draw" point

 GetTextScribblePoint(column, row, &pt);

 DrawPenBitmap(penBitmaps[penframe], pt.x - 1, pt.y - 5);

}

“See?
In just a few lines of code, I have a complete animation.
All I needed was the three pen

images and a background bitmap
showing a book opened to a blank page.
This is way more

efficient both in terms of memory and execution time
than your stupid animation common

control.
You shell guys could learn a thing or two about programming.”

“Okay, fine, don’t need to get all defensive about it.
We were just making a suggestion, that’s

all.”

Time passes,
and
Windows 95 is sent off for translation into the however
many languages it

is localized for.
A message comes in from some of the localization teams.
It seems that some

locales need to change the animation.
For example, the Arabic version of Windows needs
the

pen to write on the left-hand pages,
the pen motion should be right to left,
and the pages

need to flip from left to right.
Perhaps the Japanese translators are okay with the pen motion,

but they want the pages to flip from left to right.

The localization team contacted the WinHelp author.
“We’re trying to change the animation,

but we can’t find the AVI file
in the resources.
Can you advise us on how we should localize

the animation?”

Unfortunately, the WinHelp author had to tell the localization team
that the direction of pen

motion,
and the locations of the ink marks
are hard-coded into the program.
Since the

product had already passed code lockdown,
there was nothing that could be done.
WinHelp

shipped with a pen that moved
in the wrong direction in some locales.

Moral of the story:
There’s more to software development than programming for

performance.
Today we learned about localizability.

3/3

