
1/3

September 23, 2010

You must flush GDI operations when switching between
direct access and GDI access, and direct access includes
other parts of GDI

devblogs.microsoft.com/oldnewthing/20100923-00

Raymond Chen

A customer was running into problems when accessing the pixels of
a DIB section.
They used

the HANDLE parameter to
 CreateDIBSection and created two bitmaps from the same

underlying memory.
Those two bitmaps were then selected into corresponding DCs,
and the

customer found that changes to the pixels performed
by writing via one DC
were not visible

when read from the other DC.

The customer pointed out this clause in MSDN:

You need to guarantee that the GDI subsystem has completed
any drawing to a bitmap created
by CreateDIBSection
before you draw to the bitmap yourself.
Access to the bitmap must
be synchronized.
Do this by calling the GdiFlush function.
This applies to any use of the
pointer to the bitmap bit values,
including passing the pointer in calls
to functions such as
SetDIBits .

The customer said,
“The description says that it applies to cases
where you modify the bits

yourself through the direct memory pointer.
But all of our access is performed through

HDCs;
I would think GDI is smart enough to handle that,
but we’ve found that we still need

to call GdiFlush
to get the two DCs back in sync.”

What you ask GDI to do you have done yourself.
That’s why the documentation say any use

of the pointer.
Sort of like in law, where in many causes you can be punished for
“doing X or

causing X to be done.”
If you induce somebody else to do X,
you’re in violation as much as if

you had done X yourself.

I doubt that every call to GDI ends
with a big loop that checks whether the bits
it just

modified also belong to some other GDI bitmap in the system.

https://devblogs.microsoft.com/oldnewthing/20100923-00/?p=12773

2/3

GDIFinishAPI(HDC hdc)

{

if (IsDIBSection(GetCurrentObject(hdc, OBJ_BITMAP), &ds)) {

 EnumGdiObjects(FlushIfOverlap, &ds));

}
}

FlushIfOverlap(HGDIOBJ h, DIBSECTION *pds)

{

if (IsDIBSection(h, &ds) &&

 DIBSectionsReferToSameUnderlyingBits(pds, &ds)) {

 GdiFlush();

}
}

That would seriously slow down all DIB section operations
to cover a rare scenario that most

people don’t realize is
even possible to create.
Not the best engineering tradeoff.

The point of the documentation is
is that if you ask GDI to mess with the bits in the bitmap

via the HDC ,
you must call GdiFlush
before anybody else tries to access those bits,
even if

that “somebody else” is another part of GDI.
The example of SetDIBits is an attempt to

capture the
sense of this requirement.

Translating into this specific scenario:
You must flush the pending changes whenever you

switch between
“GDI accesses bits through the DIB section created by this handle”
and “the

bits are accessed by anybody else.”
And “anybody else” could be
“GDI accesses bits through

the DIB section created by a different handle.”

Bonus chatter:
What’s the deal with GdiFlush anyway?

As a performance optimization, GDI performs “batching”
of operations.
When you ask GDI

to perform an operation, it doesn’t always do it
right away.
Instead, it may choose to store the

action in a buffer,
and when the buffer gets full,
it “flushes the batch” and sends the

commands that it had been
saving up into kernel mode for execution.
(This idea of buffering

up operations and submitting them as a batch
is hardly new to GDI.
The C stdio library does

it, and
in networking, a variation of it goes by the name
Nagle’s Algorithm.)

GDI also flushes the batch when necessary in order to preserve semantics;
for example, if you

call GradientFill and follow it
with a call to GetPixel ,
GDI needs to flush out the

GradientFill before
issuing the GetPixel so that the pixels that get
read match the

pixels that were written.
(A much more common case of just-in-time flushing is
where you

BitBlt the results out of the bitmap
into another device context.)

This behind-the-scenes optimization works great with one exception:
DIB sections.
Since the

memory for DIB sections is directly visible,
GDI doesn’t get a chance to sneak a call to Gdi‐

Flush
before you issue your “mov eax, [esi]” instruction.
Hence the clause in MSDN

http://blogs.msdn.com/b/larryosterman/archive/2004/08/05/209160.aspx

3/3

explaining that when you switch between
GDI access and direct access,
you need to call Gdi‐

Flush to get all pending operations
out of the buffer so that the bits in memory match the

operations
you performed.

Many years ago,
we saw another case where we had to compensate for GDI batching.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2003/09/15/54925.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

