
1/4

October 18, 2010

The evolution of the ICO file format, part 1: Monochrome
beginnings

devblogs.microsoft.com/oldnewthing/20101018-00

Raymond Chen

This week is devoted to the evolution of the ICO file format.
Note that the icon resource

format is different from the ICO file format;
I’ll save that topic for another day.

The ICO file begins with a fixed header:

typedef struct ICONDIR {

 WORD idReserved;

 WORD idType;

 WORD idCount;

 ICONDIRENTRY idEntries[];

} ICONHEADER;

idReserved must be zero, and idType must be 1.
The idCount describes how many

images are included in this
ICO file.
An ICO file is really a collection of images;
the theory is

that each image is an alternate representation of the same
underlying concept, but at

different sizes and color depths.
There is nothing to prevent you, in principle, from creating

an ICO file
where the 16×16 image looks nothing like the 32×32 image,
but your users will

probably be confused.

After the idCount is an array of ICONDIRECTORY
entries whose length is given by

idCount .

struct IconDirectoryEntry {

 BYTE bWidth;

 BYTE bHeight;

 BYTE bColorCount;

 BYTE bReserved;

 WORD wPlanes;

 WORD wBitCount;

 DWORD dwBytesInRes;

 DWORD dwImageOffset;

};

https://devblogs.microsoft.com/oldnewthing/20101018-00/?p=12513

2/4

The bWidth and bHeight are the dimensions of
the image.
Originally, the supported

range was 1 through 255,
but starting in Windows 95 (and Windows NT 4),
the value 0 is

accepted as representing a width or height of 256.

The wBitCount and
 wPlanes
describe the color depth of the image;
for monochrome

icons, these value are both 1.
The bReserved must be zero.
The dwImageOffset and

dwBytesInRes
describe the location (relative to the start of the ICO file)
and size in bytes of

the actual image data.

And then there’s bColorCount .
Poor bColorCount .
It’s supposed to be equal to the

number of colors in the image;
in other words,

bColorCount = 1 << (wBitCount * wPlanes)

If wBitCount * wPlanes is greater than or equal to 8,
then bColorCount is zero.

In practice, a lot of people get lazy about filling in the
 bColorCount and set it to zero,
even

for 4-color or 16-color icons.
Starting in Windows XP,
Windows autodetects this common

error,
but its autocorrection is slightly buggy in the case of planar bitmaps.
Fortunately,

almost nobody uses planar bitmaps any more,
but still, it would be in your best interest not

to rely on the
autocorrection performed by Windows and just set your bColorCount

correctly in the first place.
An incorrect bColorCount means that when Windows tries to

find the best image for your icon, it may choose a suboptimal one
because it based its

decision on incorrect color depth information.

Although it probably isn’t true,
I will pretend that monochrome icons existed before color

icons,
because it makes the storytelling easier.

A monochome icon is described by two bitmaps, called AND
(or mask)
and XOR (or image,

or when we get to color icons, color).
Drawing an icon takes place in two steps:
First, the

mask is ANDed with the screen, then the image is XORed.
In other words,

pixel = (screen AND mask) XOR image

By choosing appropriate values for mask and image,
you can cover all the possible

monochrome BLT operations.

mask image result operation

0 0 (screen AND 0) XOR 0 = 0 blackness

0 1 (screen AND 0) XOR 1 = 1 whiteness

http://blogs.msdn.com/oldnewthing/archive/2004/12/01/273018.aspx

3/4

1 0 (screen AND 1) XOR 0 = screen nop

1 1 (screen AND 1) XOR 1 = NOT screen invert

Conceptually, the mask specifies which pixels from the
image should be copied to the

destination:
A black pixel in the mask means that the corresponding pixel
in the image is

copied.

The mask and image bitmaps are physically stored as one single
double-height DIB.
The

image bitmap comes first, followed by the mask.
(But since DIBs are stored
bottom-up, if you

actually look at
the bitmap, the mask is in the top half of the bitmap and the
image is in the

bottom half).

In terms of file format, each icon image is stored in the form
of a BITMAPINFO (which itself

takes the form of
a BITMAPINFOHEADER followed by a color table),
followed by the image

pixels, followed by the mask pixels.
The biCompression must be BI_RGB .
Since this is a

double-height bitmap, the biWidth
is the width of the image, but the biHeight
is double

the image height.
For example, a 16×16 icon would specify a width of 16
but a height of

16 × 2 = 32.

That’s pretty much it for classic monochrome icons.
Next time we’ll look at color icons.

Still, given what you know now, the following story will make sense.

A customer contacted the shell team to report that despite all
their best efforts, they could

not get Windows to use the image
they wanted from their .ICO file.
Windows for some reason

always chose a low-color icon
instead of using the high-color icon.
For example,
even though

the .ICO file had a 32bpp image available,
Windows always chose to use the 16-color (4bpp)

image,
even when running on a 32bpp display.

A closer inspection of the offending .ICO file revealed
that the bColorCount in the

IconDirectoryEntry
for all the images was set to 1,
regardless of the actual color depth of

the image.
The table of contents for the .ICO file said
“Yeah, all I’ve got are monochrome

images.
I’ve got three 48×48 monochrome images,
three 32×32 monochrome images,
and

three 16×16 monochrome images.”
Given this information, Windows figured,
“Well,
given

those choices,
I guess that means I’ll use the monochrome one.”
It chose one of images (at

pseudo-random),
and went to the bitmap data and found,
“Oh, hey, how about that, it’s

actually a 16-color image.
Okay, well, I guess I can load that.”

In summary, the .ICO file was improperly authored.
Patching each IconDirectoryEntry in

a hex editor
made the icon work as intended.
The customer thanked us for our investigation

and said
that they would take the issue up with their graphic design team.

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2010/10/04/10070943.aspx
http://www.flickr.com/photos/57669468@N00/329295021/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

