
1/4

November 15, 2010

The program running in a console decides what appears
in that console

devblogs.microsoft.com/oldnewthing/20101115-00

Raymond Chen

James Risto asks,
“Is there a way to change the behavior of the CMD.EXE window?
I would

like to add a status line.”

The use of the phrase “the CMD.EXE window” is ambiguous.
James could be referring to the

console itself, or he could be
referring to the CMD.EXE progarm.

The program running in a console decides what appears in the console.
If you want to devote

a line of text to a status bar, then feel free
to code one up.
But if you didn’t write the program

that’s running,
then you’re at the mercy of whatever that program decided to display.

Just to show that it can be done, here’s a totally useless console
program that contains a

status bar.

#define UNICODE

#define _UNICODE

#include <windows.h>

#include <strsafe.h> // for StringCchPrintf

void DrawStatusBar(HANDLE hScreen)

{

CONSOLE_SCREEN_BUFFER_INFO sbi;

if (!GetConsoleScreenBufferInfo(hScreen, &sbi)) return;

TCHAR szBuf[80];

StringCchPrintf(szBuf, 80, TEXT("Pos = %3d, %3d"),

 sbi.dwCursorPosition.X,

 sbi.dwCursorPosition.Y);

DWORD dwWritten;

COORD coDest = { 0, sbi.srWindow.Bottom };

WriteConsoleOutputCharacter(hScreen, szBuf, lstrlen(szBuf),

 coDest, &dwWritten);

}

Our lame-o status bar consists of the current cursor position.
Notice that the console

subsystem does not follow the GDI convention
of
endpoint-exclusive rectangles.

https://devblogs.microsoft.com/oldnewthing/20101115-00/?p=12283
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#2374944
http://blogs.msdn.com/oldnewthing/archive/2004/02/18/75652.aspx

2/4

int __cdecl wmain(int argc, WCHAR **argv)

{

HANDLE hConin = CreateFile(TEXT("CONIN$"),

 GENERIC_READ | GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL, OPEN_EXISTING, 0, NULL);

if (hConin == INVALID_HANDLE_VALUE) return 1;

HANDLE hConout = CreateFile(TEXT("CONOUT$"),

 GENERIC_READ | GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL, OPEN_EXISTING, 0, NULL);

if (hConout == INVALID_HANDLE_VALUE) return 1;

We start by getting the handles to the current console.
Since we are a fullscreen program, we

don’t rely on stdin and stdout.
(How do you position the cursor on a redirected output

stream?)

HANDLE hScreen = CreateConsoleScreenBuffer(

 GENERIC_READ | GENERIC_WRITE,

 0, NULL, CONSOLE_TEXTMODE_BUFFER, NULL);

if (!hScreen) return 1;

SetConsoleActiveScreenBuffer(hScreen);

We create a new screen buffer and switch to it, so that our
work doesn’t disturb what was

previously on the screen.

DWORD dwInMode;

GetConsoleMode(hConin, &dwInMode);

We start by retrieving the original console input mode
before we start fiddling with it,
so we

can restore the mode when our program is finished.

SetConsoleCtrlHandler(NULL, TRUE);

SetConsoleMode(hConin, ENABLE_MOUSE_INPUT |

 ENABLE_EXTENDED_FLAGS);

We set our console control handler to NULL
(which means “don’t terminate on Ctrl+C”)
and

enable mouse input on the console because we’re going to
be tracking the mouse position in

our status bar.

CONSOLE_SCREEN_BUFFER_INFO sbi;

if (!GetConsoleScreenBufferInfo(hConout, &sbi)) return 1;

COORD coDest = { 0, sbi.srWindow.Bottom - sbi.srWindow.Top };

DWORD dw;

FillConsoleOutputAttribute(hScreen,

 BACKGROUND_BLUE |

 FOREGROUND_BLUE | FOREGROUND_RED |

 FOREGROUND_GREEN | FOREGROUND_INTENSITY,

 sbi.srWindow.Right - sbi.srWindow.Left + 1,

 coDest, &dw);

3/4

We retrieve the screen buffer dimensions and draw a blue status
bar at the bottom of the

screen.
Notice that the endpoint-inclusive rectangles employed by the
console subsystem

result in what look like off-by-one errors.
The bottom line of the screen is Bottom - Top ,

which in an endpoint-exclusive world would be the height of the
screen, but since the

rectangle is endpoint-inclusive,
this is actually the height of the screen minus 1,
which puts us

at the bottom line of the screen.
Similarly Right - Left is the width of the screen
minus 1,

so we have to add one back to get the width.

DrawStatusBar(hScreen);

Draw our initial status bar.

INPUT_RECORD ir;

BOOL fContinue = TRUE;

while (fContinue && ReadConsoleInput(hConin, &ir, 1, &dw)) {

 switch (ir.EventType) {

 case MOUSE_EVENT:

 if (ir.Event.MouseEvent.dwEventFlags & MOUSE_MOVED) {

 SetConsoleCursorPosition(hScreen,

 ir.Event.MouseEvent.dwMousePosition);

 DrawStatusBar(hScreen);

 }

 break;

 case KEY_EVENT:

 if (ir.Event.KeyEvent.wVirtualKeyCode == VK_ESCAPE) {

 fContinue = FALSE;

 }

 break;

 }

}

This is the console version of a “message loop”:
We read input events from the console and

respond to them.
If the mouse moves, we move the cursor to the mouse position and
update

the status bar.
If the user hits the Escape key, we exit the program.

SetConsoleMode(hConin, dwInMode);

SetConsoleActiveScreenBuffer(hConout);

return 0;

}

And when the program ends, we clean up: Restore the original
input mode and restore the

original screen buffer.

If you run this program, you’ll see a happy little status bar
at the bottom whose contents

continuously reflect the cursor
position, which you can move by just waving the mouse

around.

4/4

If you want a status bar in your console program,
go ahead and draw it yourself.
Of course,

since it’s a console program, your status bar
is going to look console-y since all you have to

work with
are rectangular character cells.
Maybe you can make use of those fancy line-

drawing characters.
Party like it’s 1989!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

