The easy way out is to just answer the question: What is
the current Explorer window looking at?

=. devblogs.microsoft.com/oldnewthing/20101126-00

November 26, 2010

-
Raymond Chen

A customer had the following question:

We have an application which copies and pastes files. Our problem is that we want to paste the
files into the folder which corresponds to the currently active Windows Explorer window. Right
now, we’re using SendKeys.SendwWait("A(v)") , but we find this method unsatisfactory
because we want to replace Explorer’s default file copy engine with our own custom one. Can

you provide assistance?

(And commenter wtroost had no clue why somebody would copy a file by sending window
messages to Explorer. Well here you have it.) The easy way out is to answer the question: You

can enumerate the active Explorer windows and ask each one what folder it is viewing.
There’s even a script interface for it. The hard way out is to understand the customer’s

problem and see if there’s a better solution. The question as phrased suggests that the
customer hasn’t thought through the entire problem. What if the current window is not an
Explorer window, or if it’s a window on a virtual folder instead of a file system folder (for
example, an FTP site)? Simulating keyboard input (in this case, fake-pressing Ctrl+V) is
rarely a good solution to a problem; after all, what if the hotkey for Paste changes based on
the user’s preferred language? Or what if the Explorer window happens to be in a state where
Ctrl+V doesn’t paste files into the current folder? (For example, focus might be on the
Address Bar.) And the fact that they put contents onto the clipboard means that they are
overwriting the previous contents of the clipboard. I asked for a little more information about
what their application is trying to do.

This is a file transfer application for computers which are not directly connected to each other,
but which are both connected to a common third computer. From the first computer, you run the
file transfer application, select some files from the transfer application’s interface, and hit Copy.
This transfers the files to the common third computer. Then from the second computer, you run
the file transfer application and hit Paste, and the program retrieves the files from the common
third computer and places them in the folder that you are currently viewing in Windows
Explorer.

1/2


https://devblogs.microsoft.com/oldnewthing/20101126-00/?p=12193
http://blogs.msdn.com/oldnewthing/archive/2008/01/29/7294949.aspx#7327211
http://blogs.msdn.com/oldnewthing/archive/2005/07/05/435657.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/07/20/188696.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/02/02/9388941.aspx#9391395

Oh, the whole “get the path to the folder that Windows Explorer is viewing” is just a strange
way of telling the program where to copy the files. In other words, they were using Windows
Explorer as a very expensive cross-process replacement for the SHBrowseForFolder
function.

The recommendation therefore came in two parts:

1. Instead of hijacking Explorer as a directory-picker, just call SHBrowseForFolder . You
can pass the BIF_RETURNONLYFSDIRS flag, and SHBrowseForFolder will
automatically filter out anything that is not a file system folder, thereby saving you the
trouble of filtering them out yourself.

2. If you really want to hijack Explorer as a directory-picker, then add a context menu
command to Directory or Directory\Background called Paste from Transfer Shelf
(or whatever your application calls that intermediate computer).

Raymond Chen

Follow

2/2


http://blogs.msdn.com/oldnewthing/archive/2007/08/02/4179107.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

