
1/3

February 4, 2011

Ready… cancel… wait for it! (part 3)
devblogs.microsoft.com/oldnewthing/20110204-00

Raymond Chen

A customer reported that their application was crashing in RPC,
and they submitted a sample

program which illustrated the same
crash as their program.
Their sample program was

actually based on the
AsyncRPC sample client program, which was nice, because it
provided

a mutually-known starting point.
They made quite a few changes to the program, but this is

the important one:

// old code:

// status = RpcAsyncCancelCall(&Async, FALSE);

// new code:

status = RpcAsyncCancelCall(&Async, TRUE);

(It was actually more complicated than this,
but this is the short version.)

The program was crashing for the same reason that
Wednesday’s I/O cancellation program

was crashing:
The program issued an asynchronous cancel and didn’t
wait for the cancel to

complete.
In this case, the crash occurred when the RPC call
finally completed and RPC went

about cleaning up the call
based on the information in the now-freed
 RPC_ASYNC_STATE

structure.

The error was probably caused by the not-very-helpful
name for that last parameter to Rpc‐

AsyncCancelCall :
 fAbortCall ,
and the accompanying documentation which says,
“In an

abortive cancel (fAbortCall is TRUE),
the RpcAsyncCancelCall function sends a cancel

notification to the server and client side and the
asynchronous call is canceled immediately,

not waiting for a response from the server.”
Compare this to a nonabortive cancel,
where “the

RpcAsyncCancelCall function notifies
the server of the cancel and the client waits for the

server to complete the call.”

Obviously,
it’s faster if you don’t wait for the server to respond, right?
Let’s pass TRUE , so

that the function cancels the
asynchronous call immediately without waiting for the server.

Wow, look at how fast our program runs now!

https://devblogs.microsoft.com/oldnewthing/20110204-00/?p=11583
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/02/10123392.aspx

2/3

Unfortunately,
the documentation doesn’t make it sufficiently clear
that when you issue a

cancellation, you still have to
wait for the operation to complete before you can clean up
all

the resources associated with that operation.
Another way of looking at that last parameter is

to think
of it as fAsync .
If you pass fAsync = TRUE ,
then the
 RpcAsyncCancelCall

function issues the cancellation
and returns before the operation completes.
If you pass

fAsync = FALSE ,
then the
 RpcAsyncCancelCall
function issues the cancellation
and

waits for the operation to complete before returning.

If you switch from a synchronous cancel to an asynchronous cancel,
then you become

responsible for keeping the
 RPC_ASYNC_STATE
valid until the cancellation completes.
In this

case, the customer was using the
 RpcNotificationTypeEvent notification type,
which

means that they need to wait for the
 Async.u.hEvent to become signaled before they
can

free the RPC_ASYNC_STATE .

The customer confirmed the fix and closed the support case.
Another problem solved.

Three months later, the customer reopened the case,
reporting that after they released a new

version of their
program with the aforementioned fix,
they were nevertheless getting

WinQual
crashes which looked exactly like the ones that they were
having before they applied

the fix.
It appears that the fix wasn’t working.

Upon closer investigation, it turns out that the customer
originally did apply the fix as

recommended:
They added a
 WaitForSingleObject(Async.u.hEvent, INFINITE)
call

before destroying the Async object
to ensure that the cancellation was complete.
However,

they became frustrated that sometimes the cancellation
would take a long time to complete,

so they changed it to

WaitForSingleObject(Async.u.hEvent, 5000); // wait up to 5 seconds

The customer explained,
“After the wait fails due to timeout,
we just proceed as normal and

call
 RpcAsyncCompleteCall and free the the
 RPC_ASYNC_STATE . Is that wrong?”

Um, yeah.
Changing the
 WaitForSingleObject
from an infinite wait
to one with a timeout

means that
you just reintroduced the bug that the
 WaitForSingleObject
was originally

supposed to fix!
If the cancellation takes more than 5 seconds,
then your code will continue

and free the
 RPC_ASYNC_STATE ,
just like it did when you didn’t wait at all.

“How long can I wait before assuming that the event will simply
never get signaled?”

There is no such duration after which you can safely abandon the operation.
Even if the event

doesn’t get signaled for 30 minutes
(say because the computer is thrashing its guts out),
it

may get signaled at 30 minutes and 1 second.

“But we don’t want our program to get stuck waiting for the server.”

https://winqual.microsoft.com/

3/3

Great.
It’s fine to have your program continues running after
issuing the cancellation, even if

the RPC call hasn’t completed.
Just don’t free the RPC_ASYNC_STATE
until the call is

complete.
and if you set things up so that your completion event takes the
form of a callback,

you can just make the callback free the
RPC__ASYNC_STATE.
Then you don’t have to keep

track of the asynchronous call any more;
the system will merely call you when it’s finished,

and then you
can free the state structure.

Bonus RPC chatter:
(For the purpose of this discussion, I’ll use the term
RPC operation

instead of RPC call so we don’t have
confusion between function calls and RPC calls.)
A

colleague explained the lifetime of an RPC operation as follows:

Submit phase You call into the MIDL-generated stub. You cannot call
 Rpc‐
AsyncCancelCall
during the submit phase.The stub does magic RPC stuff.

The stub returns control back to the
caller.

Pending phase RPC is waiting for the response to the
operation.
The operation remains in this
phase until
the operation completes or is
cancelled.

You can call
 RpcAsync‐
CancelCall to cancel
the
RPC operation and
accelerate the transition
to the Notified phase.

Notified phase RPC informs the application of the result
of the operation
in a manner described
by the NotificationType
and
RPC_ASYNC_NOTIFICATION_INFO

members of
the RPC_ASYNC_STATE
structure.

You can call
 RpcAsync‐
CancelCall but it will
have no effect
since the
operation is already
complete.

Completion phase The application calls
the RpcAsync‐
CompleteCall function to clean up
the
resources used to track the RPC
operation.
You exit the completion phase
when
 RpcAsyncCompleteCall
returns
something other than
RPC_S_ASYNC_CALL_PENDING.

You cannot call Rpc‐
AsyncCancelCall after
RpcAsyncComplete‐
Call
indicates that the
operation
is complete,
since that is the call that
says “I’m all done!”

Raymond Chen

Follow

http://social.msdn.microsoft.com/Forums/en-CA/windowssdk/thread/d4ca3eb0-cbc0-4cbe-9626-7d80043969d8
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

