
1/2

February 7, 2011

The cursor isn't associated with a window or a window
class; it's associated with a thread group

devblogs.microsoft.com/oldnewthing/20110207-00

Raymond Chen

In my earlier discussion of the fact that changing a class property affects all windows of that

class, commenters LittleHelper and Norman Diamond wanted to know “Why is the cursor

associated with class and not a window?”
This is another one of those questions that start off

with an invalid assumption. The cursor is not associated with a class. The cursor is not

associated with a window. The cursor is associated with an input state. (Initially, each thread

has its own input state, but functions like AttachThreadInput can cause threads to share

their input states.)
As we saw when we explored the process by which the cursor gets set, the

cursor-setting process is initiated by the WM_SETCURSOR message, which is percolated up

and down the window hierarchy until somebody calls SetCursor and returns TRUE to say

“Okay, I set the cursor. You can stop searching now.” And that cursor remains in effect until

somebody else in the same thread group calls SetCursor.
It so happens that the Def‐

WindowProc function, when asked to set a cursor, will use the window’s class cursor. But

that’s just the default in the absence of any customization to the contrary. If you want to

customize the cursor when it is over a particular window, then use the customization; don’t

go changing the default. If you change the default, then you affect what happens to all the

other windows of the class. Just handle the WM_SETCURSOR message to establish your “per-

window cursor”. (And you can be even more specific than just per-window. For example, you

might decide to show a hand cursor if the user is over a hyperlink but an arrow cursor

otherwise.)

Many of the fields in the WNDCLASS structure are merely defaults which are applied to

windows of the class. You can still override them on a per-window basis.

Field How to override

lpfnWndProc SetWindowLongPtr(GWLP_WNDPROC)

hIcon SendMessage(WM_SETICON)

hCursor Handle the WM_SETCURSOR message

https://devblogs.microsoft.com/oldnewthing/20110207-00/?p=11563
http://blogs.msdn.com/oldnewthing/archive/2006/02/27/539880.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/02/27/539880.aspx#544387
http://blogs.msdn.com/oldnewthing/archive/2006/02/27/539880.aspx#544987
http://blogs.msdn.com/oldnewthing/archive/2006/11/21/1115695.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/05/25/421707.aspx

2/2

hbrBackground Handle the WM_ERASEBKGND message

lpszMenuName SetMenu()

(This is the same table I wrote up some time ago, but the original table didn’t have an entry

for the window procedure, so this table is slightly more complete.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/06/15/632243.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

