
1/4

February 28, 2011

If you want to use GUIDs to identify your files, then
nobody's stopping you

devblogs.microsoft.com/oldnewthing/20110228-00

Raymond Chen

Igor Levicki proposes solving the problem of file extensions by
using a GUID instead of a file

name to identify a file.

You can do this already.
Every file on an NTFS volume has an object identifier
which is

formally 16-byte buffer, but let’s just call it a GUID.
By default a file doesn’t have an object

identifier,
but you can ask for one to be created with
 FSCTL_CREATE_OR_GET_OBJECT_ID ,

which will retrieve the existing object identifier associated with
a file, or create one if there

isn’t one already.
If you are a control freak, you can use
 FSCTL_SET_OBJECT_ID to specify

the GUID you want to use
as the object identifier.
(The call fails if the file already has an

object identifier.)
And of course there is
 FSCTL_GET_OBJECT_ID to retrieve the object

identifier, if any.

https://devblogs.microsoft.com/oldnewthing/20110228-00/?p=11363
http://blogs.msdn.com/oldnewthing/archive/2007/12/17/6785519.aspx#6793266

2/4

#define UNICODE

#define _UNICODE

#include <windows.h>

#include <stdio.h>

#include <tchar.h>

#include <ole2.h>

#include <winioctl.h>

int __cdecl _tmain(int argc, PTSTR *argv)

{

HANDLE h = CreateFile(argv[1], 0,

 FILE_SHARE_READ | FILE_SHARE_WRITE |

 FILE_SHARE_DELETE, NULL,

 OPEN_EXISTING, 0, NULL);

if (h != INVALID_HANDLE_VALUE) {

 FILE_OBJECTID_BUFFER buf;

 DWORD cbOut;

 if (DeviceIoControl(h, FSCTL_CREATE_OR_GET_OBJECT_ID,

 NULL, 0, &buf, sizeof(buf),

 &cbOut, NULL)) {

 GUID guid;

 CopyMemory(&guid, &buf.ObjectId, sizeof(GUID));

 WCHAR szGuid[39];

 StringFromGUID2(guid, szGuid, 39);

 _tprintf(_T("GUID is %ws\n"), szGuid);

 }

 CloseHandle(h);

}
return 0;

}

This program takes a file or directory name
as its sole parameter and prints the associated

object identifier.

Big deal, now we have a GUID associated with each file.

The other half is, of course, using this GUID to open the file:

3/4

#define UNICODE

#define _UNICODE

#include <windows.h>

#include <stdio.h>

#include <tchar.h>

#include <ole2.h>

int __cdecl _tmain(int argc, PTSTR *argv)

{

HANDLE hRoot = CreateFile(_T("C:\\"), 0,

 FILE_SHARE_READ | FILE_SHARE_WRITE |

 FILE_SHARE_DELETE, NULL,

 OPEN_EXISTING,

 FILE_FLAG_BACKUP_SEMANTICS, NULL);

if (hRoot != INVALID_HANDLE_VALUE) {

 FILE_ID_DESCRIPTOR desc;

 desc.dwSize = sizeof(desc);

 desc.Type = ObjectIdType;

 if (SUCCEEDED(CLSIDFromString(argv[1], &desc.ObjectId))) {

 HANDLE h = OpenFileById(hRoot, &desc, GENERIC_READ,

 FILE_SHARE_READ | FILE_SHARE_WRITE |

 FILE_SHARE_DELETE, NULL, 0);

 if (h != INVALID_HANDLE_VALUE) {

 BYTE b;

 DWORD cb;

 if (ReadFile(h, &b, 1, &cb, NULL)) {

 _tprintf(_T("First byte of file is 0x%02x\n"), b);

 }

 CloseHandle(h);

 }

 }

 CloseHandle(hRoot);

}
return 0;

}

To open a file by its GUID, you first need to open
something—anything—on the volume the

file resides on.
Doesn’t matter what you open;
the only reason for having this handle is so

that
 OpenFileById knows which volume you’re talking about.
In our little test program, we

use the C: drive,
which means that the file search will take place on the
C: drive.

Next, you fill in the FILE_ID_DESCRIPTOR ,
saying that you want to open the file by its object

identifier,
and then it’s off to the races with OpenFileById .
Just as a proof of concept, we

read and print the first byte
of the file that was opened as a result.

Notice that the file you open by its object identifier does not
have to be in the current

directory.
It can be anywhere on the C: drive.
As long as you have the GUID for a file, you

can open it
no matter where it is on the drive.

4/4

You can run these two programs just to enjoy the thrill of
opening a file by its GUID.
Notice

that once you get the GUID for a file, you can move
it anywhere on the drive, and

OpenFileById
will still open it.

(And if you want to get rid of those pesky drive letters,
you can use the volume GUID instead.

Now every file is identified by a pair of GUIDs:
the volume GUID and the object identifier.)

So Igor’s dream world where all files are referenced by GUID
already exists.
Why isn’t

everybody switching over to this utopia of GUID-based
file identification?

You probably know the answer already:
Because people prefer to name things with

something mnemonic
rather than a GUID.
Imagine a file open dialog in this dream world.

“Enter the GUID of the file you wish to open, or click Browse
to see the GUIDs of all the files

on this volume so you can pick
from a list.”
How long would this dialog survive?

For today, you don’t have to call me Raymond.
You can call me
{7ecf65a0-4b78-5f9b-e77c-

8770091c0100},
or “91c” for short.

(And I’ve totally ignored the fact that
using GUIDs to identify files does nothing
to solve the

problem of trying to figure out what program should be
used to open a particular file.)

Bonus chatter:
You can also open files by their file identifer, which is a
volume-specific 64-

bit value.
But I chose to use the GUID both for the extra challenge,
and just to show that

Igor’s dream world already exists.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/03/15/89753.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

