
1/2

March 2, 2011

Although the x64 calling convention reserves spill space
for parameters, you don't have to use them as such

devblogs.microsoft.com/oldnewthing/20110302-00

Raymond Chen

Although the
x64 calling convention
reserves space on the stack as spill locations
for the first

four parameters (passed in registers),
there is no requirement that the spill locations actually

be used
for spilling.
They’re just 32 bytes of memory available for scratch use by the function

being called.

We have a test program that works okay when optimizations are disabled,
but when compiled
with full optimizations, everything appears to be wrong
right off the bat.
It doesn’t get the
correct values for
 argc and argv :

int __cdecl

wmain(int argc, WCHAR** argv) { ... }

With optimizations disabled, the code is generated correctly:

 mov [rsp+10h],rdx // argv

 mov [rsp+8],ecx // argc

 sub rsp,158h // local variables

 mov [rsp+130h],0FFFFFFFFFFFFFFFEh

 ...

But when we compile with optimizations, everything is completely
messed up:

 mov rax,rsp

 push rsi

 push rdi

 push r13

 sub rsp,0E0h

 mov qword ptr [rsp+78h],0FFFFFFFFFFFFFFFEh

 mov [rax+8],rbx // ??? should be ecx (argc)

 mov [rax+10h],rbp // ??? should be edx (argv)

When compiler optimizations are disabled, the Visual C++ x64 compiler
will spill all register

parameters into their corresponding slots.
This has as a nice side effect that debugging is a

little easier,
but really it’s just because you disabled optimizations,
so the compiler generates

simple, straightforward code,
making no attempts to be clever.

https://devblogs.microsoft.com/oldnewthing/20110302-00/?p=11333
http://blogs.msdn.com/oldnewthing/archive/2004/01/14/58579.aspx

2/2

When optimizations are enabled, then the compiler becomes more
aggressive about

removing redundant operations and using memory
for multiple purposes when variable

lifetimes don’t overlap.
If it finds that it doesn’t need to save argc
into memory (maybe it

puts it into a register),
then the spill slot for argc can be used for
something else; in this

case, it’s being used to preserve
the value of rbx .

You see the same thing even in x86 code,
where the memory used to pass parameters can be

re-used
for other purposes once the value of the parameter is no
longer needed in memory.

(The compiler might load the value into a register and use
the value from the register for the

remainder of the function,
at which point the memory used to hold the parameter becomes

unused and can be redeployed for some other purpose.)

Whatever problem you’re having with your test program,
there is nothing obviously wrong

with the code generation
provided in the purported defect report.
The problem lies

elsewhere.
(And it’s probably somewhere in your program.
Don’t immediately assume that

the reason for your problem
is a compiler bug.)

Bonus chatter:
In a (sadly rare) follow-up, the customer confessed that the
problem was

indeed in their program.
They put a function call inside an assert ,
and in the nondebug

build, they disabled assertions
(by passing /DNDEBUG to the compiler),
which means that in

the nondebug build, the function was never called.

Extra reading:
Challenges of debugging optimized x64 code.
That .frame /r command

is real time-saver.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/02/10/10127054.aspx
http://blogs.msdn.com/ntdebugging/archive/2009/01/09/challenges-of-debugging-optimized-x64-code.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

