
1/3

March 21, 2011

How does the C runtime know whether to use the static-
linking or dynamic-linking version of the header file?

devblogs.microsoft.com/oldnewthing/20110321-00

Raymond Chen

In response to a description of what happens when you get
 dllimport wrong,
nksingh

asks,
“This seems like a problem for the CRT.
As far as I know,
VC gives you the option of

statically or dynamically linking the CRT.
But it seems like the headers will have to make a

choice to support
one thing better than the other.
Conditional compilation would work,
but

then people would have to remember to include a #define somewhere.
Is this dllimport vs.

static linking thing something the compiler could figure out on its own if you’re doing Link-

time codegen?”

Let’s start from the beginning.

Yes, this would be a problem for the CRT since it wouldn’t know whether
to declare the

functions as normal static functions or as
 dllimport -style functions,
and the headers have

to make a choice which way to go.

And if you look at the headers, you can see that it is indeed done
via conditional compilation.

...

_CRTIMP int __cdecl fflush(FILE * _File);

...

This magic _CRTIMP symbol is defined in
 crtdefs.h like so:

/* Define _CRTIMP */

#ifndef _CRTIMP

#ifdef _DLL

#define _CRTIMP __declspec(dllimport)

#else /* _DLL */

#define _CRTIMP

#endif /* _DLL */

#endif /* _CRTIMP */

Conditional compilation decides whether _CRTIMP
expands to __declspec(dllimport)

or to nothing at all,
depending on whether the _DLL symbol is defined.

https://devblogs.microsoft.com/oldnewthing/20110321-00/?p=11173
http://blogs.msdn.com/oldnewthing/archive/2006/07/26/679044.aspx#679103

2/3

And yet nobody bothers writing #define _DLL before
they #include <stdio.h> .
There

must be something else going on.

In fact, we can run some experiments to see what’s going on.

#ifdef _DLL

#error "_DLL is defined"

#else

#error "_DLL is not defined"

#endif

Save this as dummy.c and run a few tests.

C:\tests> cl /MT dummy.c

dummy.c

dummy.c(4) : fatal error C1189: #error : "_DLL is not defined"

C:\tests> cl /MD dummy.c

dummy.c

dummy.c(2) : fatal error C1189: #error : "_DLL is defined"

Well how’s about that.
The compiler uses the /MT and /MD
flag to decide whether or not to

define the preprocessor symbol
 _DLL , which is the secret signal it passes to the
 crtdef.h

header file to control the conditional
compilation.

The compiler has to use this technique
instead of deferring the decision to link-time code

generation
because it cannot assume that everybody has enabled link-time
code generation.

(Indeed, we explicitly did not in our sample command lines.)

If link-time code generation were enabled, then is this something
that could be deferred until

that point?

In principle yes,
because link-time code generation in theory could just make the .obj
file a

copy of the source file (and all the header files) and do
all the actual compiling at link time.

This is a sort of extreme way of doing it,
but I guess it could’ve been done that way.

On the other hand, it also means that the compiler folks would have
to come up with a new

nonstandard extension that means “This function
might be a normal static function or it

might be a
 dllimport
function. I haven’t decided yet; I’ll tell you later.”

Seeing as how the CRT already has to solve the problem in the case
where there is no link-

time code generation, it doesn’t seem worth
the effort to add a feature to link-time-code

generation
that you don’t actually need.
It would be a feature for which the only client is the

C runtime
library itself, for which the C runtime library already requires
a separate solution

when link-time code generation is disabled,
and for which that separate solution still works

when link-time
code generation is enabled.

No engineering purpose is served by
writing code just for the sake of writing code.

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

