
1/4

March 25, 2011

How do I monitor, or even control, the lifetime of an
Explorer window?

devblogs.microsoft.com/oldnewthing/20110325-00

Raymond Chen

A customer wanted help with monitoring the lifetime of an
Explorer window.

We want to launch a copy of Explorer to open a specific folder,
then wait until the user closes
the folder before continuing.
We tried launching a copy of Explorer with the folder on the
command line, then doing a WaitForSingleObject
on the process handle, but the wait
sometimes completes immediately
without waiting.
How do we wait until the user closes the
Explorer window?

This is another case of solving a problem halfway and then
having trouble with the other half.

The reason that WaitForSingleObject
returns immediately
is that Explorer is a single-

instance program (well, limited-instance).
When you open an Explorer window, the request

is handed off to
a running copy of Explorer, and the copy of Explorer you launched
exits.

That’s why your WaitForSingleObject
returns immediately.

Fortunately, the customer was willing to explain their underlying
problem.

We have a wizard that creates some files in a directory
based on information provided by the
user,
and we want to launch Explorer to view that directory
so users can verify that things
are
set up the way they want them.
When users close the Explorer window, we ask them if
everything
was good; if not, then we back up and let the user try again.

Aha, the program is using Explorer as a “view this folder for
a little while” subroutine.

Unfortunately, Explorer doesn’t work that way.
For example, the user might decide to use the

Address Bar
and go visit some other folders completely unrelated to your
program, and your

program would just be sitting there waiting
for the user to close that window;
meanwhile, the

user doesn’t realize that your program is waiting
for it.

What you can do is host the Explorer Browser control inside
a page of your wizard
and

control it with interfaces like
IExplorerBrowser.
You can disable navigation in the Explorer

Browser
(so the user can look only at the folder
you want to preview),
and the user can click

Back if they want to try again
or Next if they are happy and want to continue.
This has the

https://devblogs.microsoft.com/oldnewthing/20110325-00/?p=11133
http://msdn.microsoft.com/en-us/library/ms645992.aspx

2/4

additional advantage of keeping all the parts of
your wizard inside the wizard framework

itself,
allowing users to continue using the wizard navigation model
that they are already

familiar with.

A
sample program which uses the Explorer Browser control
can be found in the Platform

SDK.

For the impatient, here’s the
scratch program version.
Note that this is the minimal version;

in real life, you would probably want to set some options and stuff like that.

#include <shlobj.h>

IExplorerBrowser *g_peb;

void

OnSize(HWND hwnd, UINT state, int cx, int cy)

{

 if (g_peb) {

 RECT rc = { 0, 0, cx, cy };

 g_peb->SetRect(NULL, rc);

 }

}

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 BOOL fSuccess = FALSE;

 RECT rc;

 PIDLIST_ABSOLUTE pidl = NULL;

 if (SUCCEEDED(CoCreateInstance(CLSID_ExplorerBrowser, NULL,

 CLSCTX_INPROC, IID_PPV_ARGS(&g_peb))) &&

 GetClientRect(hwnd, &rc) &&

 SUCCEEDED(g_peb->Initialize(hwnd, &rc, NULL)) &&

 SUCCEEDED(SHParseDisplayName(

 L"C:\\Program Files\\Internet Explorer",

 NULL, &pidl, 0, NULL)) &&

 SUCCEEDED(g_peb->SetOptions(EBO_NAVIGATEONCE)) &&

 SUCCEEDED(g_peb->BrowseToIDList(pidl, SBSP_ABSOLUTE))) {

 fSuccess = TRUE;

 }

 ILFree(pidl);

 return fSuccess;

}

void

OnDestroy(HWND hwnd)

{

 if (g_peb) {

 g_peb->Destroy();

 g_peb->Release();

 }

 PostQuitMessage(0);

}

http://msdn.microsoft.com/en-us/library/dd940357.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

3/4

This same technique of hosting the Explorer Browser control
can be used for other types of

“build your own burrito” scenarios:
For example, you might
host the Explorer Browser

control in a window and tell users
to copy files into that window.
When they click OK or Next

or whatever, you can enumerate
the contents of the folder and do your business.

Armed with this knowledge, you can answer these customers’ questions:

We have found that the process state of Explorer.exe changes to signaled
before the process
terminates.
Here’s a sample program:

int _tmain(int argc, TCHAR **argv)

{

STARTUPINFO si = { sizeof(si) };

PROCESS_INFORMATION pi;

if (CreateProcess(TEXT("C:\\Windows\\Explorer.exe"), TEXT(" /e,C:\\usr"),

 NULL, NULL, FALSE, 0, NULL, NULL, &si, &pi)) {

 WaitForSingleObject(pi.hProcess);

 CloseHandle(pi.hProcess);

 CloseHandle(pi.hThread);

}
return 0;

}

If we change “Explorer.exe” to “Notepad.exe” then the process handle
is signaled after Notepad
terminates, as expected.

We have a 32-bit shell extension for which a 64-bit version is not
available.
Since our clients
are running 64-bit Windows,
the 32-bit shell extension is not available in Explorer.
How can we
obtain access to this context menu?

We have a shell extension that is not UAC-compliant.
It requires that the user have
administrative privileges in order
to function properly.
We would rather not disable UAC across
the board just for this
one shell extension.
Is there a workaround that lets us run Explorer
elevated temporarily?

Bonus sample program:
The
Explorer Browser Search Sample
shows how to filter the

view.

Bonus alternative:
If you really just want to watch Explorer windows rather than
host one,

you can use
the ShellWindows object,
something I covered
many years ago
(and followed up

with a much shorter
scripting version).

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/09/29/10069021.aspx
http://msdn.microsoft.com/en-us/library/dd940358.aspx
http://msdn.microsoft.com/en-us/library/bb757028.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/07/20/188696.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/07/05/435657.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

