
1/3

April 21, 2011

The performance improvements of a lock-free algorithm
is often not in the locking

devblogs.microsoft.com/oldnewthing/20110421-00

Raymond Chen

GWO
wonders what the conditions are under which the lock-free version
significantly

outpeforms a simple critical section.

Remember that switching to a lock-free algorithm should be guided
by performance

measurements.
Switching from a simple algorithm to a complex one shouldn’t be done
unless

you know that the simple algorithm is having trouble.

That said, here are some non-obvious advantages of a lock-free algorithm
over one that uses

a simple lock.
(Later, we’ll see how you can take advantage of
these techniques without

actually going lock-free.)

Consider a program that uses a simple critical section to perform
something like the

singleton constructor.
Instead of a fancy lock-free algorithm, we use the much simpler

version:

CRITICAL_SECTION g_csSingletonX;

X *g_px = NULL;

X *GetSingletonX()

{

 EnterCriticalSection(&g_csSingletonX);

 if (g_px == NULL)

 {

 g_px = new(nothrow) X();

 }

 LeaveCriticalSection(&g_csSingletonX);

 return g_px;

}

This simple code
can run into trouble if the constructor function itself requires
some locks,

because now you have to impose a
lock hierarchy
in order to avoid a deadlock.
(And this

becomes impossible if the constructor function
belongs to code outside your control.)

https://devblogs.microsoft.com/oldnewthing/20110421-00/?p=10863
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/08/10151159.aspx#10151967
http://www.osronline.com/ddkx/ddtools/dv_8pkj.htm
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/18/10154966.aspx#10155205

2/3

When working out what your lock hierarchy should be,
you may discover that you need to

consolidate some locks.
This avoids the inversion problem,
but it also reduces your lock

granularity.
You might decide to use a single lock to cover all singletons,
and then you later

discover that you also have to extend the lock
that protects X’s constructor to cover other

operations on X.

CRITICAL_SECTION g_csCommon;

// (updated to remove double-check lock because that just raises

// more questions that distract from the point of the article)

X *GetSingletonX()

{

 EnterCriticalSection(&g_csCommon);

 if (g_px == NULL)

 {

 g_px = new(nothrow) X();

 }

 LeaveCriticalSection(&g_csCommon);

 return g_px;

}

Y *GetSingletonY()

{

 EnterCriticalSection(&g_csCommon);

 if (g_py == NULL)

 {

 g_py = new(nothrow) Y();

 }

 LeaveCriticalSection(&g_csCommon);

 return g_py;

}

void X::DoSomething()

{

 EnterCriticalSection(&g_csCommon);

 .. something ..

 LeaveCriticalSection(&g_csCommon);

}

Over time, your quiet little singleton lock has turned
into a high-contention lock in your

system.

One nice thing about a lock-free algorithm is that since there
is no lock, it can’t create

inversion in a lock hierarchy.
(Of course, you have to be careful not to use the interlocked

operations
to build a private lock, because that puts you back where
you started.)

Another nice consequence of a lock-free algorithm is that,
since there is no lock, you don’t

have to handle the
WAIT_ABANDONED case.
The data structure is never inconsistent; it passes

atomically
from one consistent state to another.
Therefore, there’s no need to write code to

clean up leftover
inconsistency.
This came in handy in
a case we looked at earlier,
so that an

application which crashes at an inopportune time will not
corrupt the shared data and

require a server reboot.

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/15/10154245.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/09/12/463977.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/13/10152929.aspx

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

