
1/1

May 16, 2011

Multithreaded UI code may be just as hard as
multithreaded non-UI code, but the consequences are
different

devblogs.microsoft.com/oldnewthing/20110516-00

Raymond Chen

Commenter Tim Smith claims that the problems with multithreaded UI code are not

significantly more than plain multithreaded code. While that may be true on a theoretical

level, the situations are quite different in practice. Regardless of whether your multithreaded

code does UI or not, you have to deal with race conditions, synchronization, cache coherency,

priority inversion, all that mulitthreaded stuff. The difference is that multithreaded problems

with non-UI code are often rare, relying on race conditions and other timing issues. As a

result, you can often get away with a multithreaded bug, because it may shows up in practice

only rarely, if ever. (On the other hand, when it does show up, it’s often impossible to

diagnose.) If you mess up multithreaded UI code, the most common effect is a hang. The nice

thing about this is that it’s easier to diagnose because everything has stopped and you can try

to figure out who is waiting for what. On the other hand, the problems also occur with much

more frequency.

So it’s true that the problems are the same, but the way they manifest themselves are very

different.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/20110516-00/?p=10663
http://blogs.msdn.com/oldnewthing/archive/2008/04/24/8420242.aspx#8424138
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

