
1/2

July 15, 2011

Using the wrong HINSTANCE in RegisterClass is like
identity theft

devblogs.microsoft.com/oldnewthing/20110715-00

Raymond Chen

Last year, I left you with a teaser for a problem that resulted in the CResourceException

being thrown.

Studying the function that threw the exception revealed that it was thrown due to a failed call

to RegisterClass . And studying the parameters that were passed to RegisterClass

revealed that HINSTANCE parameter did not match the DLL. Instead of being the instance

handle of the DLL, it was the instance handle of the host application.

Okay, now let’s apply what we learned a few years ago about the significance of the

HINSTANCE parameter passed to the RegisterClass function. By passing the HINSTANCE of

the host application, the class was registered against the namespace of the host rather than

the namespace of the DLL. It’s like signing up for a credit card using somebody else’s name

or checking a book out of the library with somebody else’s library card.

In this case, the module in question was a plug-in. It tried to register a class called, say, My‐

Class , and instead of registering against itself, it registered against the host application.

Fortunately, the host application didn’t have a class called MyClass , so the incorrect

registration didn’t cause a conflict. The book got checked out to the wrong person, but as far

as the library can tell, nothing has gone wrong. It merely looks like the host application

checked out a book.

So why did the call to RegisterClass fail? Because some other plug-in made the same

mistake. Plug-in B also registered its class against the host application, and by an amazing

coincidence, its class was also called MyClass . (If you look at how MFC auto-generates class

names, you can see that this name collision can happen quite easily.) If both plug-ins had

registered their classes properly, there would have been no problem, because each class

would have been registered against their respective DLLs, and no conflict would have arisen.

But instead, two wrongs make a wronger, and since both plug-ins incorrectly registered their

classes against the host, the first plug-in to register succeeds, and the second one crashes.

(One might argue that this is another special case of What if two programs did this?)

https://devblogs.microsoft.com/oldnewthing/20110715-00/?p=10133
https://devblogs.microsoft.com/oldnewthing/20100730-00/?p=13273
https://devblogs.microsoft.com/oldnewthing/20050418-59/?p=35873
https://devblogs.microsoft.com/oldnewthing/20050607-00/?p=35413

2/2

Both plug-ins tried to sign up for a credit card in the name of the host application. The first

one got the card, and the second one was informed by the credit card company, “Your

application was denied because you already have a card from us.”

Why did these plug-ins register against the host application instead of against their own

library cards? I don’t know for sure, but my guess is that it was due to ignorance.¹ When

reading the documentation, they found that they needed to fill in the hInstance member of

the WNDCLASS structure. Gosh, where do I get an HINSTANCE from? Oh wait, I found a

function that returns an HINSTANCE : GetModuleHandle . And hey look, if I pass NULL , a

valid HINSTANCE comes out. I’ll just set wndclass.hInstance = GetModule‐

Handle(NULL); and try it. Hey, look, it works!

Footnote

¹ This reminds me of a story that took place at an administrative hearing. The government

agency representative presented as evidence that the other party admitted in a telephone

conversation to being ignorant of the applicable regulations.

The other party angrily interrupted.

“I’m not ignorant! I simply didn’t know what the rules were.”

The judge patiently explained, “That’s what the word ignorant means.”

Raymond Chen

Follow

http://www.bing.com/search?q=%2b%22wc.hInstance+=+GetModuleHandle(NULL)%22
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

