
1/2

July 25, 2011

How is it possible to run Wordpad by just typing its name
even though it isn't on the PATH?

devblogs.microsoft.com/oldnewthing/20110725-00

Raymond Chen

In a comment completely unrelated to the topic, Chris Capel asks how Wordpad manages to

run when you type its name into the Run dialog even though the command prompt can’t find

it? In other words, the Run dialog manages to find Wordpad even though it’s not on the

PATH .
Chris was unable to find anywhere I discussed this issue earlier, but it’s there, just

with Internet Explorer as the application instead of Wordpad.
It’s through the magic of App

Paths .
 App Paths was introduced in Windows 95 to address the path pollution problem.

Prior to the introduction of App Paths , typing the name of a program without a fully-

qualified path resulted in a search along the path, and if it wasn’t found, then that was the

end of that. File not found. As a result, it became common practice for programs, as part of

their installation, to edit the user’s AUTOEXEC.BAT and add the application’s installation

directory to the path.
This had a few problems.
First of all, editing AUTOEXEC.BAT is

decidedlly nontrivial since batch files can have control flow logic like IF and CALL and

GOTO . Finding the right SET PATH=... or PATH ... command is an exercise in code

coverage analysis, especially since MS-DOS 6 added multi-config support to CONFIG.SYS ,

so the value of the CONFIG environment variable is determined at runtime. If you wanted to

avoid hanging your setup program, you would have to solve the Halting Problem. (You can’t

just stick at PATH ... at the beginning because it might get wiped out by a later PATH

command, and you can’t just stick it at the end, because control might never reach last line of

the batch file.)
And of course, very few uninstall programs would take the time to undo the

edits the installer performed, and even if they tried, there’s no guarantee that the undo would

be successful, since the user (or another installer!) may have edited the AUTOEXEC.BAT file

in the meantime.
Even if you postulate the existence of the AUTOEXEC.BAT editing fairy

who magically edits your AUTOEXEC.BAT for you, you still run into the PATH length limit.

The maximum length of a command line was 128 characters in MS-DOS, and if each program

added itself to the PATH , it wouldn’t be long before the PATH reached its maximum length.

Pre-emptive Yuhong Bao irrelevant detail that has no effect on the story:

Windows 95 increased the maximum command line length, but the program being launched

needed to know where to look for the “long command line”. And that didn’t help existing

installers which were written against the old 128-character limit. Give them an

AUTOEXEC.BAT with a line longer than 128 characters and you had a good chance that you’d

https://devblogs.microsoft.com/oldnewthing/20110725-00/?p=10073
http://blogs.msdn.com/oldnewthing/archive/2008/09/19/8957959.aspx#8958938
http://blogs.msdn.com/oldnewthing/archive/2004/09/01/223936.aspx
http://blogs.msdn.com/b/ericlippert/archive/2011/02/24/never-say-never-part-two.aspx

2/2

hit a buffer overflow bug.
On top of the difficulty of adding more directories to the PATH ,

there was the recognition that this was another case of using a global setting to solve a local

problem. It seemed wasteful to add a directory to the path just so you could find one file.

Each additional directory on the path slowed down path sarching operations, even the ones

unrelated to locating that one program.
Enter App Paths . The idea here is that instead of

adding your application directory to the path, you just create an entry under the App Paths

key saying, “If somebody is looking to execute contoso.exe , I put it over here.” Instead of

adding an entire directory to the path, you just add a single file, and it’s used only for

application execution purposes, so it doesn’t slow down other path search operations like

loading DLLs.
(Note that the old documentation on App Paths has been superseded by the

new documentation linked above.)
Now that there was a place to store information

associated with a particular application, you may as well use it for other stuff as well. A

secondary source of path pollution came from applications which added not only the

application directory to the path, but also a helper directory where the application kept its

DLLs. To address this, an additional Path value specified which directories your

application wanted to be added to the path before it was executed. Over time, additional

attributes were added to the App Paths key, such as the UseUrl value we saw some time

ago.
When you type the name of a program into the Run dialog (with no path), the Shell‐

Execute function checks if the name corresponds to an application registered under App

Paths . If so, then it uses the registration information to launch the application. Hooray,

applications can be run by just typing their name without requiring them to modify the global

path.
Note that this extra lookup is performed only by the ShellExecute family of

functions, so if you use CreateProcess or SearchPath , you’ll still get

ERROR_FILE_NOT_FOUND .
Now, the intent was that the registered full path to the application

is the same as the registered short name, just with a full path in front. For example,

wordpad.exe registers the full path of %ProgramFiles%\Windows

NT\Accessories\WORDPAD.EXE . But there’s no check that the two file names match. The

Pbrush folks took advantage of this by registering an application path entry for pbrush.exe

with a full path of %SystemRoot%\System32\mspaint.exe : That way, when somebody

types pbrush into the Run dialog, they get redirected to mspaint.exe .

Sneaky.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2008/12/11/9193695.aspx
http://msdn.microsoft.com/ee872121.aspx
http://msdn.microsoft.com/en-us/ms997545.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/06/30/10181645.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

