
1/4

October 26, 2011

How can I get notified when some other window is
destroyed?

devblogs.microsoft.com/oldnewthing/20111026-00

Raymond Chen

A customer wanted to know whether there was a method
(other than polling) to monitor

another window and find
out when it gets destroyed.
The goal was to automate some

operation,
and one of the steps was to wait until
some program closed its XYZ window before

moving on to the next step.
Finding the XYZ window could be done with a FindWindow ,
but

since the window belongs to another process, you can’t subclass it
to find out when it gets

destroyed.

Enter accessibility.

The SetWinEventHook function
lets you monitor accessibility events,
and you can do it

globally,
for a particular process,
or for a particular thread.
Since we’re interested in just one

specific window,
we can restrict our monitoring to a specific process and thread.
(You don’t

want to monitor too much or you end up getting
spammed with notifications you don’t care

about,
which will annoy both you and the end users who are wondering why
all their CPU is

being consumed on pointless activity.)

Let’s take our scratch program and have it monitor an arbitrary
window whose name is

passed on the command line.

https://devblogs.microsoft.com/oldnewthing/20111026-00/?p=9263

2/4

HWND g_hwnd; /* our main window */

HWND g_hwndTarget; /* the window we are monitoring */

HWINEVENTHOOK g_hweh;

void CALLBACK WinEventProc(

 HWINEVENTHOOK hWinEventHook,

 DWORD event,

 HWND hwnd,

 LONG idObject,

 LONG idChild,

 DWORD idEventThread,

 DWORD dwmsEventTime)

{

if (event == EVENT_OBJECT_DESTROY &&

 hwnd == g_hwndTarget &&

 idObject == OBJID_WINDOW &&

 idChild == INDEXID_CONTAINER) {

 PostMessage(g_hwnd, WM_CLOSE, 0, 0);

}
}

The WinEventHook function is where it all happens.
If our callback is told that a window

was destroyed,
and the window handle matches the one we are monitoring,
then post

ourselves a WM_CLOSE message,
which will close the window and exit the program.

The rest is just scaffolding to get to the point where our
 WinEventHook gets called.

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

DWORD dwProcessId;

DWORD dwThreadId = GetWindowThreadProcessId(g_hwndTarget,

 &dwProcessId);

if (dwThreadId)

g_hweh = SetWinEventHook(

 EVENT_OBJECT_DESTROY, EVENT_OBJECT_DESTROY,

 NULL, WinEventProc,

 dwProcessId, dwThreadId, WINEVENT_OUTOFCONTEXT);

return g_hweh != NULL;

}

To register the hook, we obtain the thread ID and process ID
of the window we are interested

in tracking,
then use the SetWinEventHook function to register
our callback function,

saying that we want to receive only EVENT_OBJECT_DESTROY
notifications by passing it as

both the eventMin
and eventMax .
We give it our callback function, and since we ask for

WINEVENT_OUTOFCONTEXT , we don’t need to pass
a module handle since we are not

requesting injection.

3/4

Notice that we restrict our hook as much as we can.
We specify that we care only about one

event,
and we are interested in only one process and only one thread.
It’s generally a good

idea to restrict the hook as much as possible.

Of course, we also have to unregister the hook when we’re done.

void

OnDestroy(HWND hwnd)

{

if (g_hweh) UnhookWinEvent(g_hweh);

PostQuitMessage(0);

}

And finally, we use our command line to specify the title of the
window we are monitoring.

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

...

 g_hwndTarget = FindWindowA(lpCmdLine);

 g_hwnd =

 hwnd = CreateWindow(

...

}

With the Run dialog open, run this program with the command line
argument Run .
The

program window opens, and when you click Cancel in the
Run dialog, the program window

closes.
Wow that was exciting.

Bonus chatter:
Remember that
the window manager needs a message pump
in order to

call you back unexpectedly.

Exercise:
Since we registered for only one thing, why did we have to
perform the tests in

WinEventProc ?
Why not just simplify the function to this?

void CALLBACK WinEventProc(

 HWINEVENTHOOK hWinEventHook,

 DWORD event,

 HWND hwnd,

 LONG idObject,

 LONG idChild,

 DWORD idEventThread,

 DWORD dwmsEventTime)

{

PostMessage(g_hwnd, WM_CLOSE, 0, 0);

}

http://blogs.msdn.com/b/oldnewthing/archive/2011/03/04/10136703.aspx

4/4

Exercise:
With the Run dialog open, run this program with the command line
argument

Run .
Now instead of clicking Cancel in the Run dialog,
type some garbage into the edit

control and then click OK.
The Run dialog goes away and an error message appears instead.

Why is the scratch program still running?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

