
1/2

November 16, 2011

How can I tell whether a COM pointer to a remote object
is still valid?

devblogs.microsoft.com/oldnewthing/20111116-00

Raymond Chen

A customer asked the rather suspicious question, “How do I check whether a pointer is valid

in another process?”
This question should make your head boggle with bewilderment. First of

all, we’ve moved beyond CrashProgramRandomly to CrashSomeOtherProgramRandomly .

Second of all, what the heck are you doing with a pointer in another process? You can’t do

anything with it!
After some back-and-forth¹ we manage to tease the real question out of the

customer: How can I tell whether a COM pointer to a remote object is still valid?
The easy

answer is “Don’t worry. COM will take care of it.” Just call the method on the object. If the

remote object is not valid, you will get an error back, like RPC_E_DISCONNECTED or

RPC_E_SERVER_DIED or RPC_E_SERVER_DIED_DNE or

HRESULT_FROM_WIN32(RPC_S_SERVER_UNAVAILABLE) . When you get an error like that,

you’ll know that the remote object is no longer valid, and you can respond accordingly.
What

if you want your program to be a little proactive and prune dead remote objects instead of

just noticing that they’re dead the net time you want to use them?
Some people “solve” this

problem by performing a QueryInterface on a newly-generated interface ID. Since the IID

has never been seen before, COM cannot consult its cache of previously-queried interfaces

and must remote the call, at which point the death of the remote object will be detected. (The

second rule for implementing QueryInterface exists in part so that COM can optimize

QueryInterface of remote objects.) The problem with this technique is that by subverting

the cache, you also end up polluting it. Each time you generate a new IID and do a dummy

QueryInterface on it, you add another dummy entry to the QueryInterface cache. This

wastes memory keeping track of interfaces that nobody will ever ask for again, and may even

push out information about interfaces that your program actually uses!
The COM folks tell

me that your program should just accept the fact that the other process can go away at any

time. Instead of making some sort of decision based on whether the other process is still

there (since a response of “yeah, it’s still here” could be wrong by the time you act on it), you

should just call the method and accept that it may fail because the other process vanished

while you weren’t looking.
Footnote
¹ The customer first explained that their server process

created an object and gave a pointer to that object to the client. The client then registered a

callback object with the server, and the server wanted to check that the client object was still

valid before invoking any methods on it. When asked, “Why not just use COM?” the customer

https://devblogs.microsoft.com/oldnewthing/20111116-00/?p=9103
http://blogs.msdn.com/b/oldnewthing/archive/2006/09/27/773741.aspx
http://blogs.msdn.com/reuvenlax/archive/2005/11/08/490565.aspx
http://msdn.microsoft.com/library/ms686590.aspx

2/2

replied, “We are using COM. We create the object on the server via CoCreateInstance ,

then register the client object via a method on our interface.”
The customer was under the

impression that when a COM pointer refers to an object in another process, you just get that

pointer from the other process.
If you think about it, this makes no sense at all. How could

any of your method calls work? You call pRemoteObject->AddRef() and the compiler is

going to deference the pRemoteObject pointer, and then crash because the pointer would

refer to memory in another process. I guess the customer was under the impression that

some magic voodoo happens so that the CPU knows that “Oh wait, this pointer really belongs

to another process, let me go fetch the memory from that other process. Okay, and now you

want to call a function pointer in another process? Okay, um, let me magically merge the two

processes together so the remote code running in that other process can access the objects in

your process.” Or something.

When you have a COM pointer to an object in another process, the pointer that you have is a

proxy which accepts method calls and marshals the call to the real object somewhere else.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

