
1/2

November 25, 2011

How to insert a large number of items into a treeview
efficiently

devblogs.microsoft.com/oldnewthing/20111125-00

Raymond Chen

Just a quick tip today.

If you need to insert a large number of items into a treeview,
like tens of thousands,
then it’s

much more efficient to insert them “backwards”.
(I’m ignoring for now the usability question

of having a treeview
that large in the first place.)
In other words, instead of

for (i = 0; i < array.Count(); i++) {

TVINSERTSTRUCT tvis;

tvis.hParent = hParentNode;

tvis.hInsertAfter = TVIF_LAST;

tvis.item.mask = TVIF_TEXT;

item.item.pszText = array[i].Text();

TreeView_InsertItem(hwndTreeView, &tvis);

}

do it this way:

for (i = array.Count() - 1; i >= 0; i--) {

TVINSERTSTRUCT tvis;

tvis.hParent = hParentNode;

tvis.hInsertAfter = TVIF_FIRST;

tvis.item.mask = TVIF_TEXT;

item.item.pszText = array[i].Text();

TreeView_InsertItem(hwndTreeView, &tvis);

}

Why is backwards-insertion faster?

It has to do with the annoying
 hInsertAfter parameter.
To validate that the
 hInsert‐

After parameter is valid,
the treeview needs to verify that the
 hInsertAfter is a valid

child of the
 hParent ,
and this is done by walking the parent’s children
looking for a match.

The sooner you find the match, the faster the validation completes.
(And if you pass

TVI_LAST ,
then the treeview needs to walk to the end of the child list.)

https://devblogs.microsoft.com/oldnewthing/20111125-00/?p=9033

2/2

You’d think that you could verify the parent/child relationship
by just doing a
 Tree‐

View_GetParent(hInsertAfter) ,
but that turns out not to be strict enough, because

hInsertAfter might itself not be a valid parameter.
If hInsertAfter is a bogus value,

then you may crash when you try to read its Parent property.
That’s if you’re lucky.
If you’re

not lucky,
then the random memory that
 hInsertAfter points to might look just enough

like a valid HTREEITEM that you end up inserting
the new node after a completely bogus

node,
and now the treeview has become corrupted.

Sure, you got the same problem if you passed a garbage
 HTREEITEM to
 TreeView_Get‐

Parent ,
but in that case, it’s just garbage in garbage out.
Nothing gets corrupted;
the

application just gets a garbage result.
But in the case of
 TreeView_InsertItem ,
the

treeview is going to update its internal data structures
based on the garbage you passed in,

and that means that the treeview winds up corrupted.

To ensure that the value passed in is valid,
the treeview checks it against the list of valid

values for
 hInsertAfter .
And therefore, you get better performance if the valid value
you

pass is the one that it checks first.

(As it happens, a lot of programs pass garbage
for hInsertAfter ,
so this defensive

validation step is absolutely necessary.)

You might say that the treeview could have a one-off optimization
for the special
 TVI_LAST

value by remembering the last child
so it can be located quickly.
The question is whether the

complexity of adding that optimization
is worth the cost:
Any tree rearranging function

would have to update the
cached value, and if you miss a spot,
then the treeview ends up

corrupted.
That’s a pretty high-risk optimization you’re suggesting there.

And think about it this way:
You’re worrying about a tree where a single node
has tens of

thousands of children,
something which (I am no longer ignoring) is a horrible user interface.

That’s like a list box with tens of thousands of items,
or a dialog box with tens of thousands of

checkboxes.
You’ll probably want to consider a better way of presenting
the information than

in a tree view that goes on for
hundreds of screens.
The treeview isn’t optimized for this case

because
you don’t optimize for the case where somebody is mis-using your system.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2007/07/19/3945339.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

