
1/2

December 2, 2011

Don't let more than one process try to read from stdin at
the same time

devblogs.microsoft.com/oldnewthing/20111202-00

Raymond Chen

A customer reported a problem with a program that ran a series of other programs in

parallel.

We have a main program (call it main.exe) that runs a bunch of child processes with stdout and
stderr redirected. (We are not redirecting stdin.) We’ve found that some of the child processes
get stuck inside the C runtime startup code on a call to GetFileType on the stdin handle.
What could be the reason for this? Is there something we can do that doesn’t require us to
modify the child processes? (They are third party code we do not have control over.)

This is one of those once you’ve debugged this problem you never forget it type of problems.

Notice that each of the child processes inherits the same stdin from main.exe, since you

aren’t redirecting stdin. Since the stdin handle was not opened as overlapped, all I/O to the

handle is serialized.
The C runtime calls GetFileType at startup to determine whether or

not to use buffering. When each child process starts up, it calls GetFileType , enters its

main , and goes about its business. Everything is great until one of them tries to read from

stdin. At that point, everything falls apart.
The next child process to start calls GetFile‐

Type , but instead of returning with a result, it waits for the previous I/O request (the read)

to complete because the handle is marked synchronous, and synchronous handles permit

only one operation at a time. The user, of course, doesn’t realize that the first program is

waiting for input (the prompt got redirected), so the user sits and waits for the program while

the program sits and waits for the user.
To solve this problem, you first need to decide what

you want to happen to stdin. Right now, you gave stdin to a dozen child processes, and each

line of input the user types will be randomly assigned to one of those programs. In this case,

the customer’s answer is “I don’t care about stdin; these programs aren’t supposed to be

reading from stdin anyway”, in which case you can redirect stdin of the child processes to

NUL .

Bonus chatter: This is also why, when you hit Ctrl+C to exit a console program which

launched child processes with CREATE_NEW_PROCESS_GROUP , the command prompt that

comes back sometimes behaves kind of strangely. Since the child processes were launched in

a separate process group, the Ctrl+C killed the main program but left the child processes

https://devblogs.microsoft.com/oldnewthing/20111202-00/?p=8983

2/2

running. If any of those child processes read from stdin, you get the “Randomly assign input”

effect described above because you have two programs racing to read from stdin: the

orphaned child process and cmd.exe .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

