
1/3

February 19, 2014

When will the static control automatically delete the
image loaded into it, and when is it the responsibility of
the application?

devblogs.microsoft.com/oldnewthing/20140219-00

Raymond Chen

If you create a static control with initial contents (for example, by creating a BITMAP or

ICON control in a dialog template), then the static control will load the contents upon

creation and destroy the contents upon destruction. So at least in the case where you don’t

touch the static control, things will work automatically.

But once you touch it, things get confusing.

If you send the STM_SET IMAGE message to a static control, this does a few things (assuming

your parameters are all valid):

The previous image is replaced by the new image you passed.

The message returns a handle to the previous image.

The static control turns off automatic image deletion.

The third part is the tricky part. If you ever (successfully) send a static control the STM_SET ‐

IMAGE message, then it says, “Okay, it’s all your problem now.” You are now responsible not

only for destroying the new image, but you are also responsible for destroying the old image

that was returned.

In other words, the following operation is not a nop:

HBITMAP hbmPrev = SendMessage(hwndStatic, STM_SETIMAGE,
 IMAGE_BITMAP, (LPARAM)hbmNew);
SendMessage(hwndStatic, STM_SETIMAGE,
 IMAGE_BITMAP, (LPARAM)hbmPrev);

This sounds like a nop, since all you did was change the image, and then change it back. But

the side effect is also that you made the static control go into your problem mode, and the

original image will no longer be automatically destroyed. If you forget to destroy it yourself,

then you have a leak.

https://devblogs.microsoft.com/oldnewthing/20140219-00/?p=1713

2/3

Wait, it gets worse.

If you are using version 6 of the common controls, then things get even more confusing if you

use the STM_SET IMAGE message to change the IMAGE_BITMAP of a SS_BITMAP static

control, and the bitmap you pass is a 32-bpp bitmap, and the image has a nonzero alpha

channel, then the static control will make a copy of the bitmap you passed in and act as if you

had passed that copy instead.¹ This by itself is no big deal, because the responsibility for

destroying the image you passed in still resides with you, the application, so the rules haven’t

changed there.

The nasty bit is that the application also must assume responsibility for destroying the secret

copy. That bitmap you didn’t even know existed and don’t have a handle to? Yeah, you’re on

the hook for that one too.

How unfair.

Even more confusing is that if you send STM_SET IMAGE a second time, it will replace the

bitmap and return a handle to the secret copy (which is a bitmap you’ve never seen before).

This means that the following assertion can fire:

HBITMAP hbmPrev = SendMessage(hwndStatic, STM_SETIMAGE,
 IMAGE_BITMAP, (LPARAM)hbmNew);
HBITMAP hbmBack = SendMessage(hwndStatic, STM_SETIMAGE,
 IMAGE_BITMAP, (LPARAM)hbmPrev);
assert(hbmNew == hbmBack); // ??

You would think that the assertion is safe because all you did was change the bitmap to

hbmNew , then change it back. And when you change it back, the “previous value” is the value

hbmNew you set it to on the previous line.

Except that if hbmNew satisfies the above magic criteria, then the value in hbmBack is not

hbmNew but rather the handle to the secret copy.

Which you have to remember to destroy.

Yuck.

The secret copy is not too secret. You can get a handle to it by sending the STM_GET IMAGE

message. Which you now need to do when you destroy the static control, just in case it’s the

secret copy. You need to compare the current image against the one that you thought you

passed in, and if they are different, then you have the secret copy that needs to be destroyed

as an extra step.

Yes, this sucks. I apologize.

3/3

(My recommendation: To detect whether a “secret copy” occurred, do a STM_GET IMAGE after

your STM_SET IMAGE and see if the handles match.)

¹ The secret copy is not an exact copy. (After all, if it were an exact copy, then there would be

no need to create the copy. It could just use the handle you passed in.) Instead, the secret

copy is a copy of the original, followed by some additional munging so that it can be

displayed on the screen while respecting the alpha channel you passed in.

Raymond Chen

Follow

http://blogs.msdn.com/b/shawnhar/archive/2009/11/06/premultiplied-alpha.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

