
1/5

March 24, 2014

Enumerating set partitions with Bell numbers and Stirling
numbers of the second kind

devblogs.microsoft.com/oldnewthing/20140324-00

Raymond Chen

Just for fun,
today’s Little Program is going to
generate set partitions.
(Why?
Because back in

2005,
somebody asked about it on an informal mailing list, suggesting it
would be an

interesting puzzle,
and now I finally got around to solving it.)

The person who asked the question said,

Below we show the partitions of [4].
The periods separate the individual sets so that, for
example,
1.23.4 is the partition {{1},{2,3},{4}}.

1 blocks: 1234

2 blocks: 123.4, 124.3, 134.2, 1.234, 12.34, 13.24, 14.23

3 blocks: 1.2.34, 1.24.3, 1.23.4, 14.2.3, 13.2.4, 12.3.4

4 blocks: 1.2.3.4

I replied with a hint, saying,
“This page explains what you need
to do, once you reinterpret

the Stirling recurrence as an enumeration.”
Only now, writing up this post,
did I realize that I

linked to
the same page they were quoting from.

The key is in the sentence,
“They satisfy the following recurrence relation,
which forms
the

basis of recursive algorithms for generating them.”
Let’s reinterpret the Stirling recurrence

combinatorially.
No wait, we don’t need to.
Wikipedia did it for us.
Go read that first.
If you

didn’t follow Wikipedia’s explanation, here’s another angle:

Suppose you have a set of n elements,
and you want to generate all the partitions into
k

blocks.
Well, let’s look at element n.
What happens when you delete it from the partition?

https://devblogs.microsoft.com/oldnewthing/20140324-00/?p=1413
http://www.theory.csc.uvic.ca/~cos/inf/setp/SetPartitions.html
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Recurrence_relation

2/5

One possibility is that
n was in a block all by itself.
After you remove it,
you are left with a

partition of n − 1
elements into
k − 1 blocks.
Therefore, to generate the partitions where
n is

in a block all by itself,
you generate all the partitions of
n − 1
elements into
k − 1 blocks,
and

then tack on a
single block consisting of just element
n.

On the other hand, if element n was not in a block by itself,
then removing it leaves a

partition of
n − 1
elements into
k blocks.
(Removing
n
did not decrease the number of blocks

because there are still other
numbers keeping that block alive.)
Now, element
n could have

belonged to any of the
k blocks,
so you have
k possible places where you could reinsert

element
n.

Therefore, our algorithm goes like this:

Handle base cases.

Otherwise,

Recursively call
S(n − 1,
k) and add
element n separately into each of the k blocks.

Recursively call
S(n − 1,
k − 1) and add
a single block consisting of just
n.

Now that we spelled out what we’re going to do,
actually doing it is a bit anticlimactic.

function Stirling(n, k, f) {

if (n == 0 && k == 0) { f([]); return; }

if (n == 0 || k == 0) { return; }

Stirling(n-1, k-1, function(s) {

 f(s.concat([[n]])); // append [n] to the array

});

Stirling(n-1, k, function(s) {

 for (var i = 0; i < k; i++) {

 f(s.map(function(t, j) { // append n to the i'th subarray

 return t.concat(i == j ? n : []);

 }));

 }

});

}

You can test out this function by logging
the results to the console.

function logToConsole(s) {

 console.log(JSON.stringify(s));

}

Stirling(4, 2, logToConsole);

Let’s walk through the function.
The first test catches the vacuous base
case where you say,

“Please show me all the ways of breaking
up nothing into zero blocks.”
The answer is, “There

is exactly one way
of doing this, which is to break it into
zero blocks.”
Math is cute that way.

3/5

The second test catches the other base cases
where you say,
“Please show me all the ways of

breaking up
 n elements into zero blocks”
(can’t be done if n > 0 , because you will always

have elements left over),
or you say,
“Please show me all the ways of breaking up
0 elements

into k blocks”
(which also can’t be done if k > 0
because
there are no elements to put in

the
first block).

After disposing of the base cases,
we get to the meat of the recurrence.
First, we ask for all the

ways of
breaking
 n - 1 elements
into
 k - 1 blocks,
and for each of them, we add
a single

block consisting of just n .

Next, we ask for all the ways of breaking
 n - 1 elements
into
 k blocks,
and for each of

them, we go into a loop
adding n to each block.
The goofy map creates a deep copy of the

array and adds n to the i th block.

Here’s a walkthrough of the goofy map :

The concat method creates a new array consisting
of the starting array with the

concat parameters
added at the end.
If a parameter is an array, then its elements are

added;
otherwise the parameter itself is added.
For example,
 [1].concat(2, [3,

4]) returns
 [1, 2, 3, 4] .
The concat method creates a new array,
and a

common idiom is
 s.concat() to make a shallow copy of an array.

The map method calls the provided callback once
for each element of the array s .

The return values from all the callbacks are collected to
form a new array, which is

returned.
For example, [1,2,3].map(function (v) { return v * 2; })
returns

the new array [2, 4, 6] .

The map callback is called with the subarray
as the first parameter and the index as

the second parameter.
(There is also a third parameter, which we don’t use.)

Therefore, if all we want to do was
create a deep copy of s ,
we could write

s.map(function (t, j) { return t.concat(); }) .

But we don’t want a perfect deep copy.
We want to change the i th element.
Therefore,

we check the index, and if it is equal to the i ,
then we append n .
Otherwise, we

append [] which appends nothing.

After building the array (with modifications),
we pass it to the callback function f .

This pattern is common enough that maybe we should pull it into
a helper function.

4/5

function copyArrayOfArrays(array, indexToEdit, editor) {

return array.map(function(e, i) {

 return i === indexToEdit ? editor(e) : e.concat();

});

}

function Stirling(n, k, f) {

if (n == 0 && k == 0) { f([]); return; }

if (n == 0 || k == 0) { return; }

Stirling(n-1, k-1, function(s) {

 f(s.concat([[n]])); // append [n] to the array

});

Stirling(n-1, k, function(s) {

 for (var i = 0; i < k; i++) {

 f(copyArrayOfArrays(s, i, function(e) { return e.concat(n); }));

 }

});

}

The copyArrayOfArrays
function abstracts the goofy map :
You give it an array of arrays,

and optionally an index to edit and the function that
does the editing.
It copies the array of

arrays and calls your editor on the
element you want to edit.

To reduce the number of memory allocations,
the recursion could also be done destructively.

You’re then counting on the callback not modifying the result,
since you’re going to use it

again.

function Stirling(n, k, f) {

if (n == 0 && k == 0) { f([]); return; }

if (n == 0 || k == 0) { return; }

Stirling(n-1, k, function(s) {

 for (var i = 0; i < k; i++) {

 s[i].push(n);

 f(s);

 s[i].pop();

 }

});

Stirling(n-1, k-1, function(s) {

 s.push([n]);

 f(s);

 s.pop();

});

}

The original question was about enumerating all partitions
(Bell numbers),
and that’s easy to

put together from the Stirling numbers.

function Bell(n, f) {

for (var i = 1; i <= n; i++) {

 Stirling(n, i, f);

}
}

5/5

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

