
1/1

March 26, 2014

Can CoCreateGuid ever return GUID_NULL?
devblogs.microsoft.com/oldnewthing/20140326-00

Raymond Chen

A customer asked whether the Co Create Guid function can ever return GUID_NULL . Their

code uses GUID_NULL for special purposes, and it would be bad if that was ever returned as

the GUID for an object. “Can we assume that Co Create Guid never returns GUID_NULL ?

Or should we test the return value against GUID_NULL , and if it is equal, then call Co ‐

Create Guid and try again?” Some people started running Co Create Guid a bunch of times

and observing that it was spitting out type 4 GUIDs, which will always have a 4 in the version

field. Then other people started wondering whether the use of Algorithm 4 was contractual (it

isn’t). Then still other people went back to read the RFCs which cover UUIDs to see whether

those documents provided any guidance. And then I had to step in and stop the madness. It

is very easy to show that any UUID generator which generates GUID_NULL has failed to

meet the requirement that the generated UUID be unique in space and time: If it’s equal to

GUID_NULL , then it isn’t unique! The uniqueness requirement is that the generated GUID

be different from any other valid GUID. And if it generated GUID_NULL , then it wouldn’t be

different from GUID_NULL ! (And GUID_NULL is a valid GUID, specifically identified in

RFC4122 section 4.1.7.) If you’re so worried about Co Create Guid generating a duplicate

GUID_NULL , why aren’t you worried about Co Create Guid generating a duplicate

IID_IUnknown or GUID_DEV CLASS_1394 or any of the other GUIDs that have already been

generated in the past? In other words, no valid implementation of Co Create Guid can

generate GUID_NULL because the specification for the function says that it is not allowed to

generate any GUID that has been seen before.

One of my colleagues cheekily remarked, “And even if it did generate GUID_NULL for some

reason, uniqueness would require that it do so only once! (So you should try to force this bug

to occur in test, and then you can be confident that it will never occur in production.)”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20140326-00/?p=1393
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

