
1/2

March 28, 2014

The dangers of buffering up posted messages and then
reposting them later

devblogs.microsoft.com/oldnewthing/20140328-00

Raymond Chen

A customer wanted to check that their idea for solving a re-entrancy problem doesn’t have

any hidden gotchas.

We have a window which processes incoming work. One of our work items enters a modal
loop, and if new work gets posted to the window while the modal loop is running, our work
manager gets re-entered, and Bad Things happen.

Our proposed solution is to alter the modal loop so that it buffers up all messages destined for
the worker window. (Messages for any other window are dispatched normally.) When the modal
loop completes, we re-post all the messages from the buffer, thereby allowing the worker
window to resume processing.

The danger here is that reposting messages can result in messages being processed out of

order. Depending on how your worker window is designed, this might or might not be a

problem. For example, suppose that during the modal operation, somebody posts the

WWM_FOO STARTED message to the worker window. You buffer it up. When your modal

operation is complete, you are about to post the message back into the queue, but another

thread races against you and posts the WWM_FOO COMPLETED message before you can post

your buffered messages back into the queue. Result: The worker window receives the

WWM_FOO COMPLETED message before it receives the WWM_FOO STARTED message. This will

probably lead to confusion.

The place to solve this problem is in the window itself. That gets rid of the race condition.

https://devblogs.microsoft.com/oldnewthing/20140328-00/?p=1373

2/2

LRESULT CALLBACK WorkerWindow::WndProc(
 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (uMsg is a work message) {
 if (m_cBusy) {
 // Now is a bad time to process the work message.
 // Queue it up for later.
 m_queue.Append(uMsg, wParam, lParam);
 } else {
 m_cBusy++; // prevent re-entrancy
 do {
 ProcessWorkMessage(uMsg, wParam, lParam);
 } while (m_queue.RemoveFirst(&uMsg, &wParam, &lParam));
 m_cBusy--; // re-entrancy no longer a problem
 }
 return 0;
}
... // handle the other messages
}

By queueing up the work inside the window itself, you ensure that the messages are

processed in the same order they were received.

This technique can be extended to, say, have the worker window do some degree of work

throttling. For example, you might keep track of how long you’ve been processing work, and

if it’s been a long time, then stop to pump messages for a while in case any system messages

came in, and somebody is waiting for your answer.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

