
1/4

April 11, 2014

Windows is not a Microsoft Visual C/C++ Run-Time
delivery channel

devblogs.microsoft.com/oldnewthing/20140411-00

Raymond Chen

There’s a DLL in the system directory called
 MSVCRT.DLL ,
and from its name, you might

think that it is the
Microsoft Visual C/C++ Run-Time library.
That is a perfectly reasonable

guess.

But it would also be wrong.

The Microsoft Visual C/C++ Run-Time libraries go by names
like
 MSVCR71.DLL or

MSVCR80.DLL or
 MSVCR90.DLL or
 MSVCR100.DLL ,
and the debugging versions have a D

in there, too.
And
like MFC,
these binaries might be on your machine as a side effect
of the

implementation of a particular Windows component,
but they are not contractual.
If your

program requires the
Visual C/C++ Run-Time library,
then your program needs to install the

appropriate version.
(There are redistributable packages you can
include with your

application.)

Okay, so what’s with the DLL with the misleading name
 MSVCRT.DLL ?
The unfortunate

name is a consequence of history.

Back in Windows 95,
 MSVCRT.DLL was the
Microsoft Visual C/C++ Run-Time library,
or at

least it was the runtime library for Visual C/C++ 4.2.
As each new version of Visual C/C++

came out, the Windows team
had to go update their copy of MSVCRT.DLL
to match.
And if

the Windows team wanted to fix a bug in
 MSVCRT.DLL ,
they had to make sure that the

Visual C/C++ team made the corresponding
change in their version.

This high degree of coördination became untenable,
especially since it required the Windows

team to do things like
push a new version of MSVCRT.DLL to all downlevel
platforms

whenever a new version of Visual C/C++ came out.
(Good luck doing this in the days before

Windows Update!)

And sometimes these fixes caused compatibility problems.
For example, I remember there

was a fix for a Y2K problem
which
caused one application to crash
because the fix
altered the

stack usage in such a way that exposed an
uninitialized variable bug.

https://devblogs.microsoft.com/oldnewthing/20140411-00/?p=1273
http://blogs.msdn.com/b/oldnewthing/archive/2008/01/11/7065021.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/10/06/10220920.aspx#10222088

2/4

One serious problem with the MVSCRT.DLL
“one runtime to rule them all” model is that

multiple versions of Visual C++ would all use the same library,
and keeping one DLL

compatible with all versions of Visual C++
was a maintenance nightmare.
For example, if a

new C++ language feature required a change
to the ostream class,
you had to be careful to

design your change so that the
class was still binary-compatible with the older version
of the

class.
This meant not changing the size of the class (because somebody
may have derived

from it)
and not changing the offsets of any members,
and being careful which virtual

methods you call.
This was in practice not done, and the result was that (for example)

Windows 95 and Windows 98 both had DLLs called
 MSVCRT.DLL that were not compatible

with each other.

And of course there was the problem of some application installer
unwittingly overwriting

the existing copy of
 MSVCRT.DLL with an older one,
causing the entire operating system to

stop working.

At some point, the decision was made to just give up
and declare it an operating system DLL,

to be used only by operating system components.
All newer versions of Visual C/C++ used

specifically-numbered
DLLs for their runtime libraries.
(Giving different names to each

version of the run-time library
solves the problem of trying to make one DLL service multiple

versions of clients,
as well as addressing the accidental downgrade problem.)

Although MSVCRT.DLL has been an operating system DLL
for a long time,
and has been

documented as off-limits to applications,
there are still
a lot of people
who
treat it as a C

runtime delivery channel,
and those programs create a lot of grief for the product team.

I remember one change that the runtime library folks made to
 MSVCRT.DLL that had to be

backed out and revisited
because they found an application that not only linked to

MSVCRT.DLL instead of the runtime library the
compiler intended,
but also groveled into an

internal array and manipulated
private members.
(I was one of the people who investigated

this compatibility
issue, but I was not the one who solved it.)

// Note: The issue has been simplified for expository purposes

struct SomethingInternal

{

 int widget;

 short widgetFlags;

 char widgetLevel;

 int needs_more_time;

};
SomethingInternal InternalArray[80];

The runtime library folks added a new member to the structure:

http://msdn.microsoft.com/en-us/library/abx4dbyh%28VS.80%29.aspx#sectiontoggle2
http://blogs.msdn.com/b/oldnewthing/archive/2011/08/03/10192225.aspx#10192991
http://blogs.msdn.com/b/oldnewthing/archive/2010/06/07/10020654.aspx#10020962

3/4

struct SomethingInternal

{

 int widget;

 short widgetFlags;

 char widgetLevel;

 int needs_more_time;

 int needs_more_cowbell;

};

This change increased the size of the
 SomethingInternal structure,
which in turn meant

that when the application did

// Redeclare this internal structure in MSVCRT.DLL

// so we can poke the needs_more_time member to get more time.

struct SomethingInternal

{

 int widget;

 short widgetFlags;

 char widgetLevel;

 int needs_more_time;

};
extern SomethingInternal InternalArray[80];

...

 InternalArray[i].needs_more_time = 1;

...

it ended up poking the wrong byte because the structure
size didn’t match.

The runtime library folks had to go back and squeeze the cowbell
flag into the structure in a

way that didn’t alter the size
of the SomethingInternal structure.
I don’t remember

exactly what the fix was,
but one way they could’ve done it was by squeezing the flag
into the

one byte of padding between
 widgetLevel and
 needs_more_time .

struct SomethingInternal

{

 int widget;

 short widgetFlags;

 char widgetLevel;

 char needs_more_cowbell;

 int needs_more_time;

};

Bonus chatter:
The application had an easy time messing with the internal array
because

the source code to the C runtime library
is included with the compiler,
So much for “All these

compatibility problems would go away
if you published the source code.”
Publishing the

source code makes it easier to introduce
compatibility problems,
because it lays bare all the

internal undocumented behaviors.
Instead of trying to reverse-engineer the runtime library,

you can just sit down and read it,
and if you want to do something sneaky,
you can just
copy

the
declaration of the internal array
and
party on
the
 needs_more_time member.

http://www.nbc.com/saturday-night-live/video/more-cowbell-with-will-ferrell-on-snl--video--saturday-night-live--nbc/n41046
http://blogs.msdn.com/b/oldnewthing/archive/2014/02/11/10498299.aspx

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

