
1/3

May 23, 2014

Why is the debugger telling me I crashed because my
DLL was unloaded, when I see it loaded right here
happily executing code?

devblogs.microsoft.com/oldnewthing/20140523-00

Raymond Chen

A customer was puzzled by what appeared to be contradictory information coming from the

debugger.

https://devblogs.microsoft.com/oldnewthing/20140523-00/?p=913

2/3

We have Windows Error Reporting failures that tell us that we are executing code in our DLL
which has been unloaded. Here’s a sample stack:

Child-SP RetAddr Call Site
00000037`7995e8b0 00007ffb`fe64b08e ntdll!RtlDispatchException+0x197
00000037`7995ef80 000007f6`e5d5390c ntdll!KiUserExceptionDispatch+0x2e
00000037`7995f5b8 00007ffb`fc977640 <Unloaded_contoso.dll>+0x3390c
00000037`7995f5c0 00007ffb`fc978296 RPCRT4!NDRSRundownContextHandle+0x18
00000037`7995f610 00007ffb`fc9780ed RPCRT4!DestroyContextHandlesForGuard+0xea
00000037`7995f650 00007ffb`fc9b5ff4
RPCRT4!ASSOCIATION_HANDLE::~ASSOCIATION_HANDLE+0x39
00000037`7995f680 00007ffb`fc9b5f7c RPCRT4!LRPC_SASSOCIATION::`scalar deleting
destructor'+0x14
00000037`7995f6b0 00007ffb`fc978b25
RPCRT4!LRPC_SCALL_BROKEN_FLOW::FreeObject+0x14
00000037`7995f6e0 00007ffb`fc982e44
RPCRT4!LRPC_SASSOCIATION::MessageReceivedWithClosePending+0x6d
00000037`7995f730 00007ffb`fc9825be RPCRT4!LRPC_ADDRESS::ProcessIO+0x794
00000037`7995f870 00007ffb`fe5ead64 RPCRT4!LrpcIoComplete+0xae
00000037`7995f910 00007ffb`fe5e928a ntdll!TppAlpcpExecuteCallback+0x204
00000037`7995f980 00007ffb`fc350ce5 ntdll!TppWorkerThread+0x70a
00000037`7995fd00 00007ffb`fe60f009 KERNEL32!BaseThreadInitThunk+0xd
00000037`7995fd30 00000000`00000000 ntdll!RtlUserThreadStart+0x1d

But if we ask the debugger what modules are loaded, our DLL is right there, loaded as happy as
can be:

0:000> lm
start end module name
...
000007f6`e6000000 000007f6`e6050000 contoso (deferred)
...

In fact, we can view other threads in the process, and they are happily running code in our DLL.
What’s going on here?

All the information you need to solve this problem is given right there in the problem report.

You just have to put the pieces together.

Let’s take a closer look at that <Unloaded_contoso.dll>+0x3390c entry. The address that

the symbol refers to is the return address from the previous frame: 000007f6`e5d5390c .

Subtract 0x3390c from that, and you get 000007f6`e5d20000 , which is the base address

of the unloaded module.

On the other hand, the lm command says that the currently-loaded copy of contoso.dll

is loaded at 000007f6`e6000000 . This is a different address.

3/3

What happened here is that contoso.dll was loaded into memory at

000007f6`e5d20000 , and then it ran for a while. The DLL was then unloaded from

memory, and later loaded back into memory. When it returned, it was loaded at a different

address 000007f6`e6000000 . For some reason (improper cleanup when unloading the first

copy, most likely), there was still a function pointer pointing into the old unloaded copy, and

when NDRS Rundown Context Handle tries to call into that function pointer, it calls into an

unloaded DLL, and you crash.

When faced with something that seems impossible, you need to look more closely for clues

that suggest how your implicit assumptions may be incorrect. In this case, the assumption

was that there was only one copy of contoso.dll .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

