
1/4

June 9, 2014

Improving the performance of CF_HDROP by providing
file attribute information

devblogs.microsoft.com/oldnewthing/20140609-00

Raymond Chen

The CF_HDROP clipboard format is still quite popular, despite its limitation of being limited

to files. You can’t use it to represent virtual content, for example.

For all of you still using CF_HDROP , you can improve the performance of drag/drop

operations by adding a little more information to your data object.

Observe that the CF_HDROP clipboard format is just a list of paths. Some drop targets care

about whether the paths refer to directories or to files, and since CF_HDROP does not provide

this information, the drop targets are forced to access the disk to get the answer. (This can be

expensive for network locations.)

To help this case, you can add a CFSTR_FILE_ATTRIBUTES_ARRAY to your data object. This

contains the file attribute information for the items in your CF_HDROP , thereby saving the

drop target the cost of having to go find them.

Take our tiny drag-drop sample and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20140609-00/?p=783
http://blogs.msdn.com/b/oldnewthing/archive/2008/03/18/8080183.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2008/03/11/8080077.aspx

2/4

class CTinyDataObject : public IDataObject
{
 ...
 enum {
 // DATA_TEXT,
 DATA_HDROP,
 DATA_NUM,
 DATA_INVALID = -1,
 };
 ...
};
CTinyDataObject::CTinyDataObject() : m_cRef(1)
{
 SetFORMATETC(&m_rgfe[DATA_HDROP], CF_HDROP);
}
struct STATICDROPFILES
{
DROPFILES df;
TCHAR szFile[ARRAYSIZE(TEXT("C:\\Something.txt\0"))];
} const c_hdrop = {
 {
 FIELD_OFFSET(STATICDROPFILES, szFile),
 { 0, 0 },
 FALSE,
 sizeof(TCHAR) == sizeof(WCHAR), // fUnicode
 },
 TEXT("C:\\Something.txt\0"),
};
HRESULT CTinyDataObject::GetData(FORMATETC *pfe, STGMEDIUM *pmed)
{
 ZeroMemory(pmed, sizeof(*pmed));
 switch (GetDataIndex(pfe)) {
 case DATA_HDROP:
 pmed->tymed = TYMED_HGLOBAL;
 return CreateHGlobalFromBlob(&&c_hdrop, sizeof(c_hdrop),
 GMEM_MOVEABLE, &pmed->hGlobal);
 }
 return DV_E_FORMATETC;
}

Okay, let’s look at what we did here.

First, we make our data object report a CF_HDROP . We then declare a static DROP FILES

structure which we use for all of our drag-drop operations. (Of course, in real life, you would

generate it dynamically, but this is just a Little Program.)

That’s our basic program that drags a file.

Note that

you are much better off letting the shell create the data object,

3/4

since that data object will contain much richer information (and this entire article would not

be needed). Here’s a sample program which uses the Get UI Object Of File function to do this

in just a few lines. It’s much shorter than having to cook up this CTiny Data Object class.

I’m doing it this way on the assumption that your program is deeply invested in the less

flexible CF_HDROP format, so changing from CF_HDROP to some other format would be

impractical.

Okay, so that’s the program we’re starting from. Let’s add support for precomputed

attributes.

class CTinyDataObject : public IDataObject
{
 ...
 enum {
 DATA_HDROP,
 DATA_ATTRIBUTES,
 DATA_NUM,
 DATA_INVALID = -1,
 };
 ...
};
CTinyDataObject::CTinyDataObject() : m_cRef(1)
{
 SetFORMATETC(&m_rgfe[DATA_HDROP], CF_HDROP);
 SetFORMATETC(&m_rgfe[DATA_ATTRIBUTES],
 RegisterClipboardFormat(CFSTR_FILE_ATTRIBUTES_ARRAY));
}
FILE_ATTRIBUTES_ARRAY c_attr = {
1, // cItems
FILE_ATTRIBUTE_ARCHIVE, // OR of attributes
FILE_ATTRIBUTE_ARCHIVE, // AND of attributes
{ FILE_ATTRIBUTE_ARCHIVE }, // the file attributes
};
HRESULT CTinyDataObject::GetData(FORMATETC *pfe, STGMEDIUM *pmed)
{
 ZeroMemory(pmed, sizeof(*pmed));
 switch (GetDataIndex(pfe)) {
 case DATA_HDROP:
 pmed->tymed = TYMED_HGLOBAL;
 return CreateHGlobalFromBlob(&c_hdrop, sizeof(c_hdrop),
 GMEM_MOVEABLE, &pmed->hGlobal);
 case DATA_ATTRIBUTES:
 pmed->tymed = TYMED_HGLOBAL;
 return CreateHGlobalFromBlob(&c_attr1, sizeof(c_attr1),
 GMEM_MOVEABLE, &pmed->hGlobal);
 }
 return DV_E_FORMATETC;
}

Okay, let’s look at what we did here.

http://blogs.msdn.com/b/oldnewthing/archive/2004/12/06/275659.aspx

4/4

We added a new data format, CFSTR_FILE_ATTRIBUTES_ARRAY , and we created a static

copy of the FILE_ATTRIBUTES_ARRAY variable-length structure that contains the attributes

of our one file. Of course, in a real program, you would generate the structure dynamically.

Note that I use a sneaky trick here: Since the FILE_ATTRIBUTES_ARRAY ends with an array

of length 1, and I happen to need exactly one item, I can just declare the structure as-is and

fill in the one slot. (If I had more than one item, then I would have needed more typing.)

To make things easier for the consumers of the FILE_ATTRIBUTES_ARRAY , the structure

also asks you to report the logical OR and logical AND of all the file attributes. This is to allow

quick answers to questions like “Is everything in this CF_DROP a file?” or “Is anything in this

CF_DROP write-protected?” Since we have only one file, the calculation of these OR and

AND values is nearly trivial.

Okay, so there isn’t much benefit to adding file attributes to a drag of a single file from the

local hard drive, since the local hard drive is pretty fast, and the file attributes may very well

be cached. But if you’ve placed thousands of files from a network drive onto the clipboard,

this shortcut can save a lot of time. (That was in fact the customer problem that inspired this

Little Program.)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/08/26/220873.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

