
1/4

July 10, 2014

Using the REFIID/void** pattern for returning COM
objects for future-proofing and to avoid problems with
dependencies

devblogs.microsoft.com/oldnewthing/20140710-00

Raymond Chen

Suppose you have a function that creates a reference to a COM object:

// pixie.h
STDAPI CreateShellItemFromPixieDust(
 const PIXIEDUST *ppd,
 IShellItem **ppsi);

There are a few issues with this design.

First of all, it requires that whoever uses your header file must have included shlobj.h

first, since that’s where IShell Item is defined. You could solve that problem by putting

#include <shlobj.h> at the top of pixie.h , but that creates its own problems. For

example, many header files alter their behavior based on symbols that have been #define d,

and including that other header file as part of pixie.h means that it’s going to use the

settings that were active at the time pixie.h was included (which may not be what the

clients of your header file are expecting). For example:

#include <windows.h>
#include <ole2.h>
#include <pixie.h>
#define STRICT_TYPED_ITEMIDS
#include <shlobj.h>

This program wants to use strict typed item IDs, so it defines the magic symbol before

including shlobj.h . Unfortunately, that request is ignored because the pixie.h header

file secretly included shlobj.h prematurely.

This can get particularly messy if somebody wants to include shlobj.h with particular

preprocessor tricks temporarily active.

https://devblogs.microsoft.com/oldnewthing/20140710-00/?p=533
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/24/10387757.aspx

2/4

#include <windows.h>
#include <ole2.h>
#include <pixie.h>
// The WINDOWDATA structure added in Windows Vista conflicts
// with the one we defined back in 2000, so rename it to
// WINDOWDATA_WINDOWS.
#define WINDOWDATA WINDOWDATA_WINDOWS
#include <shlobj.h>
#undef WINDOWDATA
// Here's our version of WINDOWDATA
#include <contosotypes.h>

This code works around a naming conflict that was created when Windows Vista added a

structure called WINDOW DATA to shlobj.h . The application already had a structure with

the same name, so it has to rename the one in shlobj.h to some other name to avoid a

redefinition error.

If you made pixie.h include shlobj.h on its own, it would do so without this fancy

renaming, and the developers of that code will curse and say something like this:

#include <windows.h>
#include <ole2.h>
// The WINDOWDATA structure added in Windows Vista conflicts
// with the one we defined back in 2000, so rename it to
// WINDOWDATA_WINDOWS.
#define WINDOWDATA WINDOWDATA_WINDOWS
// pixie.h secretly includes shlobj.h so we have to put its #include
// under WINDOWDATA protection.
#include <pixie.h>
#include <shlobj.h>
#undef WINDOWDATA
// Here's our version of WINDOWDATA
#include <contosotypes.h>

Another problem with the Create Shell Item From Pixie Dust function is that it hard-codes

the output interface to IShell Item . When everybody moves on to IShell Item2 , all the

callers will have to follow the Create Shell Item From Pixie Dust call with a Query ‐

Interface to get the interface they really want. (Which, if your object is out-of-process,

could mean another round trip to the server.)

The solution to both of these problems is to simply make the caller specify what type of object

they want.

// pixie.h
STDAPI CreateShellItemFromPixieDust(
 const PIXIEDUST *ppd,
 REFIID riid,
 void **ppv);

3/4

Now that we are no longer mentioning IShell Item explicitly, we don’t need to include

shlobj.h any more. And if the caller wants IShell Item2 , they can just ask for it.

Your creation function used to look like this:

STDAPI CreateShellItemFromPixieDust(
 const PIXIEDUST *ppd,
 IShellItem **ppsi)
{
 *ppsi = nullptr;
 IShellItem *psiResult;
 HRESULT hr = ... do whatever ...;
 if (SUCCEEDED(hr))
 {
 *ppsi = psiResult;
 }
 return hr;
}

You simply have to tweak the way you return the pointer:

STDAPI CreateShellItemFromPixieDust(
 const PIXIEDUST *ppd,
 REFIID riid,
 void **ppv)
{
 *ppv = nullptr;
 IShellItem *psiResult;
 HRESULT hr = ... do whatever ...;
 if (SUCCEEDED(hr))
 {
 hr = psiResult->QueryInterface(riid, ppv);
 psiResult->Release();
 }
 return hr;
}

Callers of your function would go from

IShellItem *psi;
hr = CreateShellItemFromPixieDust(ppd, &psi);

to

IShellItem *psi;
hr = CreateShellItemFromPixieDust(ppd, IID_PPV_ARGS(&psi));

If the caller decides that they really want an IShell Item2 , they merely have to change their

variable declaration; the call to the creation function is unchanged.

4/4

IShellItem2 *psi;
hr = CreateShellItemFromPixieDust(ppd, IID_PPV_ARGS(&psi));

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

