
1/7

July 21, 2014

The alternate story of the time one of my colleagues
debugged a line-of-business application for a package
delivery service

devblogs.microsoft.com/oldnewthing/20140721-01

Raymond Chen

Some people objected to the length, the structure, the metaphors, the speculation, and

fabrication. So let’s say they were my editors. Here’s what the article might have looked like,

had I taken their recommendations. (Some recommendations were to text that was also

recommended cut. I applied the recommendations before cutting; the cuts are in gray.) You

tell me whether you like the original or the edited version.

Back in the days of Windows 95 development, one of my
colleagues debugged a line-of-business application for a major
delivery service. This was a program that the company gave to its
top-tier high-volume customers, so that they could place and
track their orders directly. And by directly, I mean that the
program dialed the modem (since that was how computers
communicated with each other back then) to contact the delivery
service’s mainframe (it was all mainframes back then) a computer
at the delivery service and upload the new orders and download
the status of existing orders.¹

[Length. The “top tier
customer” part of the
story is irrelevant.]
[Length. The
mainframe part of the
story is irrelevant.]
[Speculation. No proof
that the computer
being dialed is a
mainframe. For all you
know, it was an Apple
][on the other end of
the modem.]

Version 1.0 of the application had a notorious bug: Ninety days
after you installed the program, it stopped working. They forgot to
remove the beta expiration code. I guess that’s why they have a
version 1.01. It told you that the beta period has expired.

[Length. Version 1.0 is
irrelevant.]
[Speculation. No proof
that the beta
expiration code was
left by mistake. It
could have been
intentional, for
whatever reason.
Probably some
nefarious reason.]

https://devblogs.microsoft.com/oldnewthing/20140721-01/?p=443
http://blogs.msdn.com/b/oldnewthing/archive/2014/07/19/10543324.aspx#10543500
http://blogs.msdn.com/b/oldnewthing/archive/2014/07/19/10543324.aspx#10543729

2/7

Anyway, the bug that my colleague investigated was that If you
entered a particular type of order with a particular set of options in
a particular way, then the application crashed your system.
Setting up a copy of the application in order to replicate the
problem was itself a bit of an ordeal, but that’s a whole different
story.

[Length. Retransition
no longer necessary.
The “setting up” story
is irrelevant.]

Okay, the program is set up, and yup, it crashes exactly as
described when run on Windows 95. Actually, it also crashes
exactly as described when run on Windows 3.1. This is just plain
an application bug.

[Length. Irrelevant.]

The initial crash [Structure. Create
heading (even though
it gives away some of
the story).]

Here’s why it crashed: After the program dials up the mainframe
to submit the order the order system, it tries to refresh the list of
orders that have yet to be delivered a list box control. The code
that does this assumes that the list of undelivered orders the list
box control is the control with focus. But if you ask for labels to be
printed, then the printing code changes focus in order to display
the “Please place the label on the package exactly like this”
dialog, under the specific circumstances, the control is no longer
focus; as I recall, it was because a dialog box had appeared and
changed focus, and as a result, the refresh code can’t find the
undelivered order list list box and crashes on a null pointer. (I’m
totally making this up, by the way. The details of the scenario
aren’t important to the story.)

[Fabrication. All that is
known is that there
was a list box that lost
focus to a dialog box.]

Okay, well, that’s no big deal. A null pointer fault should just put
up the Unrecoverable Application Error dialog box and close the
program. Why does this particular null pointer fault crash the
entire system?

[Embellishment.]

Recovering from the crash [Structure. Create
heading.]

The developers of the program saw that their refresh code
sometimes crashed on a null pointer, and instead of fixing it by
actually fixing the code so it could find the list of undelivered
orders even if it didn’t have focus, or fixing it by adding a null
pointer check, they fixed it by adding a null pointer exception
handler. (I wish to commend myself for resisting the urge to put
the word fixed in quotation marks in that last sentence.) The
program installed a null pointer exception handler.

[Speculation. No way
of knowing that this
was what the
developers were
thinking when they
wrote the code.]

3/7

Now, 16-bit Windows didn’t have structured exception handling.
The only type of exception handler was a global exception
handler, and this wasn’t just global to the process. This was
global to the entire system. Your exception handler was called for
every exception everywhere. If you screwed it up, you screwed
up the entire system. (I think you can see where this is going.)

[Embellishment.]

The developers of the program converted their global exception
handler to a local one by going to every function that had a “We
seem to crash on a null pointer and I don’t know why” bug and
making these changes: A few functions in the program took the
following form:

extern jmp_buf caught;
extern BOOL trapExceptions;
void scaryFunction(...)
{
if (setjmp(&caught)) return;
trapExceptions = TRUE;
... body of function ...
trapExceptions = FALSE;
}

Their global exception handler checks the trapExceptions
global variable, and if it is TRUE , they set it back to FALSE and
do a longjmp which sends control back to the start of the
function, which detects that something bad must have happened
and just returns out of the function.

[Speculation. No way
of knowing that this
was what the
developers were
thinking when they
wrote the code. No
proof that the code
was first written
without a global
exception handler,
and that the handler
was added later. No
proof that every such
function set this
variable. No proof that
the reason for adding
the setjmp was to
protect against null
pointer failures.]

Yes, things are kind of messed up as a result of this. Yes, there is
a memory leak. But at least their application didn’t crash.

[Embellishment.]

On the other hand, if the global variable is FALSE , because their
application crashed in some other function that didn’t have this
special protection, or because some other totally unrelated
application crashed, the global exception handler decided to exit
the application by running around freeing all the DLLs and
memory associated with their application.

Okay, so far so good, for certain values of good.

[Embellishment.]

Failed recovery [Structure. Add
heading here.]

4/7

These system-wide exception handlers had to be written in
assembly code because they were dispatched with a very
strange calling convention. But the developers of this application
didn’t write their system-wide exception handler in assembly
language. Their application was written in MFC, so they just went
to Visual C++ (as it was then known), clicked through some Add a
Windows hook wizard, and got some generic HOOKPROC . (I don’t
know if Visual C++ actually had an Add a Windows hook wizard;
they could just have copied the code from somewhere.)
Nevermind that these system-wide exception handlers are not
HOOKPROC s, so the function has the wrong prototype. What’s

more, the code they used marked the hook function as
__loadds . This means that the function For whatever reason,

the handler they installed saves the previous value of the DS
register on entry, then changes the register to point to the
application’s data, and on exit, the function restores the previous
value of DS .

[Speculation. No proof
that the program was
written with MFC in
the Microsoft Visual
C++ IDE. It could
have been written with
Notepad in assembly
language that just
happens to look like
the assembly
language generated
by the Microsoft
Visual C++ compiler
when it compiles code
written in MFC.]

The DS is a register on the x86 CPU that describes the data
currently being operated upon. All that’s important here is that the
value in the DS register must always be valid, or the CPU will
raise an exception.

[Need to explain the
DS register in case

the reader cannot
infer this from the
description that
comes later. We have
established that
neither the author nor
the reader is allowed
to draw inferences.]

Okay, now we’re about to enter the set piece at the end of the
movie: Our hero’s fear of spiders, his girlfriend’s bad ankle from
an old soccer injury, the executive toy on the villain’s desk, and all
the other tiny little clues dropped in the previous ninety minutes
come together to form an enormous chain reaction.

[Embellishment.]

http://gideonsway.wordpress.com/2011/04/06/what-is-a-movie-set-piece/

5/7

The application crashes on a null pointer. The system-wide
custom exception handler is called. The crash is not one that is
being protected by the global variable, so the custom exception
handler frees the application from memory. The system-wide
custom exception handler now returns, but wait, what is it
returning to?

The crash was in the application, which means that the DS
register it saved on entry to the custom exception handler points
to the application’s data. The custom exception handler freed the
application’s data and then returned, declaring the exception
handled. As the function exited, it tried to restore the original DS
register, but the CPU said, “Nice try, but that is not a valid value
for the DS register (because you freed it).” The CPU reported
this error by (dramatic pause) raising an exception.

[Embellishment.]

That’s right, The system-wide custom exception handler crashed
with an exception.

[Embellishment]

The chain reaction [Structure. Add
heading here.]

Okay, things start snowballing. This is the part of the movie where
the director uses quick cuts between different locations, maybe
with a little slow motion thrown in.

[Embellishment.]

Since an exception was raised, the custom exception handler is
called recursively. Each time through the recursion, the custom
exception handler frees all the DLLs and memory associated with
the application. But that’s okay, right? Because the second and
subsequent times, the memory was already freed, so the
attempts to free them again will just fail with an invalid parameter
error.

But wait, their list of DLLs associated with the application
included USER , GDI , and KERNEL . Now, Windows is perfectly
capable of unloading dependent DLLs when you unload the main
DLL, so when they unloaded their main program, the kernel
already decremented the usage count on USER , GDI , and
KERNEL automatically. But they apparently didn’t trust Windows

to do this, because after all, it was Windows that was causing
their application to crash, so they took it upon themselves to free
those DLLs manually. For whatever reason, the handler frees the
DLLs anyway.

[Speculation. No way
of knowing that this
was what the
developers were
thinking when they
wrote the code.]

http://www.thelonelyisland.com/video/cool-guys-explosions

6/7

Therefore, each time through the loop, the usage counts for
USER , GDI , and KERNEL drop by one. Zoom in on the

countdown clock on the ticking time bomb.

Beep beep beep beep beep. The reference count finally drops to
zero. The window manager, the graphics subsystem, and the
kernel itself have all been unloaded from memory. There’s
nothing left to run the show!

[Embellishment.]

Boom, bluescreen. Hot flaming death.

The punch line to all this is that whenever you call the company’s
product support line and describe a problem you encountered,
their response is always, “Yeah, we’re really sorry about that
one.”

[Length. Irrelevant.]

Bonus chatter: What is that whole different story mentioned near
the top?

[Length. Cut the entire
bonus chatter.
Irrelevant story.]

Well, when the delivery service sent the latest version of the
software to the Windows 95 team, they also provided an account
number to use. My colleague used that account number to try to
reproduce the problem, and since the problem occurred only after
the order was submitted, she would have to submit delivery
requests, say for a letter to be picked up from 221B Baker Street
and delivered to 62 West Wallaby Street, or maybe for a 100-
pound package of radioactive material to be picked up from 1600
Pennsylvania Avenue and delivered to 10 Downing Street. all of
which were fictitious.

[Fabrication. No proof
that these were the
addresses and orders
used. All that is known
is that fictitious orders
were placed.]

After about two weeks of this, my colleague got a phone call from
people identifying themselves as Microsoft’s shipping department.
“What the heck are you doing?”

[Speculation. No proof
that the call truly
came from the
shipping department.
Could have been a
lucky prank call.]
[Fabrication. No
transcript of this call
exists.]

7/7

It turns out that the account number my colleague was given was
Microsoft’s own corporate account number. As in a real live
account. She was inadvertently prank-calling the delivery
company and sending actual trucks all over the country to pick up
nonexistent letters and packages. The people who identified
themselves as Microsoft’s shipping department and people from
the delivery service’s headquarters claimed that they were frantic
trying to trace where all the bogus orders were coming from.

[Hearsay.]

¹ Mind you, this sort of thing is the stuff that average Joe
customers can do while still in their pajamas, but back in those
days, it was a feature that only top-tier customers had access to,
because, y’know, mainframe.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

