
1/5

August 12, 2014

Keep your eye on the code page: C# edition (warning
about DllImport)

devblogs.microsoft.com/oldnewthing/20140812-00

Raymond Chen

Often, we receive problem reports from customers who failed to
keep their eye on the code

page.

https://devblogs.microsoft.com/oldnewthing/20140812-00/?p=263

2/5

Does the SHGetFileInfo function
support files with non-ASCII characters in their names?
We find that the function either fails outright or
returns question marks when asked to provide
information
for files with non-ASCII characters in their name.

3/5

using System;

using System.Runtime.InteropServices;

class Program

{

static void Main(string[] args)

{
 string fileName = "BgṍRồ.txt";

 Console.WriteLine("File exists? {0}", System.IO.File.Exists(fileName));

 // assumes extensions are hidden

 string expected = "BgṍRồ";

 Test(fileName, SHGFI_DISPLAYNAME, expected);

 Test(fileName, SHGFI_DISPLAYNAME | SHGFI_USEFILEATTRIBUTES, expected);

}
static void Test(string fileName, uint flags, string expected)

{
 var actual = GetNameViaSHGFI(fileName, flags);

 Console.WriteLine("{0} == {1} ? {2}", actual, expected, actual == expected);

}
static string GetNameViaSHGFI(string fileName, uint flags)

{
 SHFILEINFO sfi = new SHFILEINFO();

 if (SHGetFileInfo(fileName, 0, ref sfi, Marshal.SizeOf(sfi),

 flags) != IntPtr.Zero) {

 return sfi.szDisplayName;

 } else {

 return null;

 }

}
[StructLayout(LayoutKind.Sequential)]

struct SHFILEINFO {

 public IntPtr hIcon;

 public int iIcon;

 public uint dwAttributes;

 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 260)]

 public string szDisplayName;

 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 80)]

 public string szTypeName;

}
const uint SHGFI_USEFILEATTRIBUTES = 0x10;

const uint SHGFI_DISPLAYNAME = 0x0200;

[DllImport("shell32.dll")]

static extern IntPtr SHGetFileInfo(

 string path, uint fileAttributes, ref SHFILEINFO info, int cbSize,

 uint flags);

}

// Output:

// File exists? True

// == Bg?R? ? False

// Bg?R? == Bg?R? ? False

4/5

If we ask for the display name, the function fails
even though the file does exist.
If we also pass
the
 SHGFI_USEFILEATTRIBUTES flag
to force the system to act as if the file existed,
then it
returns the file name but with question marks
where the non-ASCII characters should be.

The SHGetFileInfo function
supports non-ASCII characters just fine,
provided you call the

version that supports non-ASCII characters!

The customer here fell into the trap of not keeping their eye on the code
page.
It goes back to

an unfortunate choice of defaults in the
System.Runtime.InteropServices namespace:
At the

time the CLR was originally being developed,
Windows operating systems derived from

Windows 95 were still
in common use,
so the CLR folks decided to default to
CharSet.Ansi.

This made sense back in the day, since it meant that your program
ran the same on

Windows 98 as it did in Windows NT.
In the passage of time, the Windows 95 series
of

operating systems became obsolete,
so the need to be compatible with it gradually

disappeared.
But too late.
The rules were already set, and the default of
CharSet.Ansi could

not be changed.

The solution is to specify
CharSet.Unicode explicitly in the
StructLayout
and
DllImport

attributes.

FxCop catches this error, flagging it as
SpecifyMarshalingForPInvokeStringArguments.
The

error explanation talks about the security risks of
unmapped characters,
which is all well and

good,
but it is looking too much at the specific issue and not
so much at the big picture.
As a

result, people may ignore the issue because it is flagged
as a complicated security issue, and

they will think,
“Eh, this is just my unit test, I’m not concerned about security here.”

However, the big picture is

This is almost certainly an oversight on your part.
You didn’t really mean to disable Unicode
support here.

Change the lines

[StructLayout(LayoutKind.Sequential)]

[DllImport("shell32.dll")]

to

[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Unicode)]

[DllImport("shell32.dll", CharSet=CharSet.Unicode)]

and re-run the program. This time, it prints

File exists? True

Bg?R? == Bg?R? ? True

Bg?R? == Bg?R? ? True

5/5

Note that you have to do the string comparison in the program
because the console itself has

a troubled history with Unicode.
At this point, I will simply cue a
Michael Kaplan
rant and

link to
an article explaining how to ask nicely.

Raymond Chen

Follow

http://www.siao2.com/
http://www.siao2.com/2010/04/07/9989346.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

