
1/3

August 18, 2014

Deleting elements from an JavaScript array and closing
up the gaps

devblogs.microsoft.com/oldnewthing/20140818-00

Raymond Chen

Today’s Little Program is an exercise that solves the following problem:

Given a JavaScript array a
and an unsorted array indices
(possibly containing duplicates),
calculate the result of deleting all of the elements from the original
array as specified by the
indices.
For example, suppose
 a = ["alice", "bob", "charles", "david", "eve"]
and
 indices = [2, 4, 2, 0] .

a[0] = "alice";

a[1] = "bob";

a[2] = "charles";

a[3] = "david";

a[4] = "eve";

a.length = 5;

The indices specify that elements 2 (charles), 4 (eve),
2 (charles again, redundant), and 0 (alice)
should be
deleted from the array,
leaving bob and david.

Now, if you had to delete only one element from the array,
it is pretty simple:

a.splice(n, 1);

The trick with removing multiple elements is
that deleting one element shifts the indices,

which can throw off future calculations.
One solution is to remove the highest-indexed

element first;
in other words, operate on the indices in reverse sorted order.

indices.sort().reverse().forEach(function(n) { a.splice(n, 1); });

This technique does still suffer from the problem that if
there are duplicates in the indices,

extraneous elements get deleted by mistake.

https://devblogs.microsoft.com/oldnewthing/20140818-00/?p=223

2/3

Another approach is to reinterpret the problem by focusing not on
the deletion but on the

survivors:
Produce the array consisting of elements whose indices are not
in the list of indices

to be deleted.

a = a.filter(function(e, i) { return indices.indexOf(i) >= 0; });

The above approach works well if the list of indices to be deleted
is short, but it gets quite

expensive if the list is long.

My approach is to use the fact that JavaScript arrays can be sparse.
This is a side effect of the

fact that JavaScript array indices
are actually object properties;
the only thing that makes

arrays different from generic objects in
a language-theoretic sense is
the magic length

property:

If a new property is added, and the property name
is the stringification of a whole

number,
then the length is updated to the numeric
value of the added property

name, plus 1.

If the length property is modified programmatically,
the new value must be a whole

number,
and
all properties which are the stringification of a whole number
greater than

or equal to the new length
are deleted.

(See
ECMA-262
sections
15.4,
15.4.5.1,
and
15.4.5.2
for nitpicky details.)

The first step, then, is to delete all the indices that need to be deleted.

indices.forEach(function(n) { delete a[n]; });

When applied to our sample data, this leaves

a[1] = "bob";

a[3] = "david";

a.length = 5;

which
gets printed in a rather goofy way:
 a = [, "bob", , "dave",] .

The next step is to close up the gaps.
We take advantage of the fact that the Array

enumeration methods operate on indices 0 through length - 1
and that they skip missing

elements.
Therefore, I can simply apply a dummy filter:

a = a.filter(function() { return true; });

Exercise:
What is the difference (aside from performance) between
 a.push(1); and a =

a.concat(1); ?
How is this question relevant to today's exercise?

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.5.1
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.5.2

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

